基于谱元法的复杂地形风场大涡模拟

胡伟成, 杨庆山, 闫渤文, 张建

胡伟成, 杨庆山, 闫渤文, 张建. 基于谱元法的复杂地形风场大涡模拟[J]. 工程力学, 2018, 35(12): 7-14. DOI: 10.6052/j.issn.1000-4750.2017.08.0663
引用本文: 胡伟成, 杨庆山, 闫渤文, 张建. 基于谱元法的复杂地形风场大涡模拟[J]. 工程力学, 2018, 35(12): 7-14. DOI: 10.6052/j.issn.1000-4750.2017.08.0663
HU Wei-cheng, YANG Qing-shan, YAN Bo-wen, ZHANG Jian. LARGE-EDDY-SIMULATION ON COMPLEX TERRAIN BASED ON SPECTRAL ELEMENT METHOD[J]. Engineering Mechanics, 2018, 35(12): 7-14. DOI: 10.6052/j.issn.1000-4750.2017.08.0663
Citation: HU Wei-cheng, YANG Qing-shan, YAN Bo-wen, ZHANG Jian. LARGE-EDDY-SIMULATION ON COMPLEX TERRAIN BASED ON SPECTRAL ELEMENT METHOD[J]. Engineering Mechanics, 2018, 35(12): 7-14. DOI: 10.6052/j.issn.1000-4750.2017.08.0663

基于谱元法的复杂地形风场大涡模拟

基金项目: 国家自然科学基金重点项目(51578059)
详细信息
    作者简介:

    杨庆山(1968-),男,河北人,教授,博士,博导,主要从事结构抗震和抗风等研究(E-mail:qshyang@bjtu.edu.cn);闫渤文(1989-),男,河南人,讲师,博士,硕导,主要从事结构风工程等研究(E-mail:yanbowen89@163.com);张建(1981-),男,辽宁人,讲师,博士,硕导,主要从事结构风工程和流固耦合等研究(E-mail:zhangjian@bjtu.edu.cn).

    通讯作者:

    胡伟成(1992-),男,江西人,博士生,主要从事结构风工程研究(E-mail:13115277@bjtu.edu.cn).

  • 中图分类号: O351.2

LARGE-EDDY-SIMULATION ON COMPLEX TERRAIN BASED ON SPECTRAL ELEMENT METHOD

  • 摘要: 以Askervein山为研究对象,基于开源平台Nek5000,自编程序完成复杂地形下谱元法的网格建模,添加计算湍流粘性项子程序,对复杂地形风场进行大涡模拟,并与场地实测数据及其它数值结果进行对比。结果表明,谱元法的大涡模拟结果与Askervein山的场地实测结果符合较好,表明该方法在复杂地形风场的预测上有较高的精度,可用于复杂地形的风能资源评估。
    Abstract: Based on open-source Nek5000, a grid generation method of SEM (Spectral Element Method) for complex terrain was put forward, and the wind field of Askervein hill was numerically simulated by LES (Large-eddy-simulation). The result of numerical simulation was compared with the field observation and another numerical result. The comparisons show that the wind speed acceleration factor on line-A obtained by LES simulation is in good agreement with the results from the field observation. SEM combined with LES turbulence model can be used to predict wind energy resource distribution on complex terrain.
  • [1] 靳晶新, 叶林, 吴丹曼, 等. 风能资源评估方法综述[J]. 电力建设, 2017, 38(4):1-8. Jin Jingxin, Ye Lin, Wu Danman, et al. Review of wind energy assessment methods[J]. Electric Power Construction, 2017, 38(4):1-8. (in Chinese)
    [2] 遆子龙, 李永乐, 廖海黎. 地表粗糙度对山区峡谷地形桥址区风场影响研究[J]. 工程力学, 2017, 34(6):73-81. Ti Zilong, Li Yongle, Liao Haili. Effect of ground surface roughness on wind field over bridge site with a gorge in mountainous area[J]. Engineering Mechanics, 2017, 34(6):73-81. (in Chinese)
    [3] 刘志文, 薛亚飞, 季建东, 等. 黄河复杂地形桥位风特性现场实测[J]. 工程力学, 2015, 32(增刊):233-239. Liu Zhiwen, Xue Yafei, Ji Jiandong, et al. Field measure-ment of wind characteristics of a bridgesite with complex yellow river terrain[J]. Engineering Mechanics, 2015, 32(Suppl):233-239. (in Chinese)
    [4] Tse K T, Weerasuriya A U, Zhang X, et al. Effects of twisted wind flows on wind conditions in passages between buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 167:87-100.
    [5] Bilal M, Birkelund Y, Homola M, et al. Wind over complex terrain-Microscale modelling with two types of mesoscale winds at Nygårdsfjell[J]. Renewable Energy, 2016, 99:647-653.
    [6] Blocken B, Stathopoulos T, Carmeliet J. CFD simulation of the atmospheric boundary layer:wall function problems[J]. Atmospheric Environment, 2007, 41(2):238-252.
    [7] Yan B W, Li Q S, He Y C, et al. RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε, model[J]. Environmental Fluid Mechanics, 2016, 16(1):1-23.
    [8] Lopes A S, Palma J M L M, Castro F A. Simulation of the Askervein flow. Part 2:Large-eddy simulations[J]. Boundary-Layer Meteorology, 2007, 125(1):85-108.
    [9] Liu Z, Ishihara T, He X, et al. LES study on the turbulent flow fields over complex terrain covered by vegetation canopy[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 155:60-73.
    [10] 张来平, 贺立新, 刘伟, 等. 基于非结构/混合网格的高阶精度格式研究进展[J]. 力学进展, 2013, 43(2):202-236. Zhang Laiping, He Lixin, Liu Wei, et al. High order accuracy scheme research based on unstructure/hybrid grid[J]. Advances In Mechanics, 2013, 43(2):202-236. (in Chinese)
    [11] Patera A T. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3):468-488.
    [12] Korczak K Z, Patera A T. An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry[J]. Journal of Computational Physics, 1986, 62(2):361-382.
    [13] Komatitsch D, Vilotte J P. The spectral element method:an efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America, 2012, 88(2):368-392.
    [14] Lee U. Spectral element method in structural dynamics[M]. Singapore:J. Wiley & Sons Asia, 2009.
    [15] Giraldo F X, Warburton T. A nodal triangle-based spectral element method for the shallow water equations on the sphere[J]. Journal of Computational Physics, 2005, 207(1):129-150.
    [16] Fischer P F, Lottes J W, Kerkemeier S G. Nek5000 Web Page[CP]. http://nek5000.mcs.anl.gov,2008.
    [17] Smagorinsky J S. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3):99-164.
    [18] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids, 1991, 3(7):1760-1965.
    [19] Lilly D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids, 1992, 4(4):633-633.
    [20] Kanchi H, Sengupta K, Mashayek F. Effect of turbulent inflow boundary condition in LES of flow over a backward-facing step using spectral element method[J]. International Journal of Heat & Mass Transfer, 2013, 62(1):782-793.
    [21] Taylor P A, Teunissen H W. The Askervein hill project:overview and background data[J]. Boundary-Layer Meteorology, 1987, 39(1-2):15-39.
    [22] 梁思超, 张晓东, 康顺. 复杂地形风场绕流数值模拟方法[J]. 工程热物理学报, 2011, 32(6):945-948. Liang Sichao, Zhang Xiaodong, Kang Shun. Numerical simulation for wind flow around complex terrain[J]. Journal of Engineering Thermophysics, 2011, 32(6):945-948. (in Chinese)
    [23] Stangroom P. CFD modelling of wind flow over terrain[D]. Nottingham:University of Nottingham, 2004.
    [24] 吕振峰. 复杂地形对风速分布影响的数值模拟研究[D]. 昆明, 昆明理工大学, 2015. Lü Zhenfeng. Research on influence of complex terrain on wind speed distribution of wind field[D]. Kunming:Kunming University of Science and Technology, 2015. (in Chinese)
    [25] 邓院昌, 刘沙, 余志, 等. 实际地形风场CFD模拟中粗糙度的影响分析[J]. 太阳能学报, 2010, 31(12):1644-1648. Deng Yuanchang, Liu Sha, Yu Zhi, et al. Research on roughness of CFD simulation on complex terrain[J]. Acta Energiae Solaris Sinica, 2010, 31(12):1644-1648. (in Chinese)
    [26] Karamanos G S, Sherwin S J. A high order splitting scheme for the Navier-Stokes equations with variable viscosity[J]. Applied Numerical Mathematics, 2000, 33(1-4):455-462.
    [27] Castro F A, Palma J M L M, Lopes A S. Simulation of the Askervein flow. part 1:reynolds averaged navier-stokes equations (k ∈ turbulence model)[J]. Boundary-Layer Meteorology, 2003, 107(3):501-530.
  • 期刊类型引用(11)

    1. 王道航,吴桂香,孙博,黄兆明. 纤维增强黏弹性阻尼器力学性能试验研究. 建筑结构. 2025(04): 52-58 . 百度学术
    2. 尚峰,刘文光,许浩,张强. 单层与多层放大型黏弹阻尼器力学性能研究. 建筑结构学报. 2024(04): 86-96 . 百度学术
    3. 武大洋,张璐,杨国涛,赵斌. 可恢复功能复合结构体系基于复模态叠加法的响应分析和应用. 工程力学. 2024(07): 147-162 . 本站查看
    4. 王伟,陈俊百. 温度相关型结构地震风险评估方法. 工程力学. 2023(05): 93-103+139 . 本站查看
    5. 马乾瑛,李帅,高晓敏,吴宗欢. 复合橡胶基磁流变弹性体的动态力学特性研究与模型验证. 复合材料科学与工程. 2023(09): 5-12+20 . 百度学术
    6. 徐业守,徐赵东,郭迎庆,黄兴淮,葛腾,贺琪. 基于RVE方法的炭黑填充黏弹性材料力学行为研究. 工程力学. 2023(12): 245-256 . 本站查看
    7. 朱云青,吴京,童超,柳东森,谢鲁齐. 带可更换耗能钢棒的装配式混凝土单侧屈服梁柱节点抗震性能试验研究. 工程力学. 2022(07): 205-216+256 . 本站查看
    8. 孙利民,狄方殿,陈林,邹易清. 考虑垂度影响的拉索-双粘滞阻尼器系统振动分析. 工程力学. 2022(08): 49-60 . 本站查看
    9. 卜海峰,蒋欢军,和留生. 剪切型金属阻尼器恢复力模型研究. 工程力学. 2022(10): 131-139 . 本站查看
    10. 徐业守,徐赵东,郭迎庆,黄兴淮,李强强,贺琪. 管约束和分子链缠结作用下黏弹性材料力学行为. 东南大学学报(自然科学版). 2022(06): 1023-1031 . 百度学术
    11. 李旭,赵应龙,朱成华,杨一凡,陈美霞. 不同结构特征的STF阻尼器性能试验对比分析. 中国造船. 2022(05): 233-244 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  515
  • HTML全文浏览量:  38
  • PDF下载量:  134
  • 被引次数: 21
出版历程
  • 收稿日期:  2017-08-29
  • 修回日期:  2017-11-28
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回