[1] |
靳晶新, 叶林, 吴丹曼, 等. 风能资源评估方法综述[J]. 电力建设, 2017, 38(4):1-8. Jin Jingxin, Ye Lin, Wu Danman, et al. Review of wind energy assessment methods[J]. Electric Power Construction, 2017, 38(4):1-8. (in Chinese)
|
[2] |
遆子龙, 李永乐, 廖海黎. 地表粗糙度对山区峡谷地形桥址区风场影响研究[J]. 工程力学, 2017, 34(6):73-81. Ti Zilong, Li Yongle, Liao Haili. Effect of ground surface roughness on wind field over bridge site with a gorge in mountainous area[J]. Engineering Mechanics, 2017, 34(6):73-81. (in Chinese)
|
[3] |
刘志文, 薛亚飞, 季建东, 等. 黄河复杂地形桥位风特性现场实测[J]. 工程力学, 2015, 32(增刊):233-239. Liu Zhiwen, Xue Yafei, Ji Jiandong, et al. Field measure-ment of wind characteristics of a bridgesite with complex yellow river terrain[J]. Engineering Mechanics, 2015, 32(Suppl):233-239. (in Chinese)
|
[4] |
Tse K T, Weerasuriya A U, Zhang X, et al. Effects of twisted wind flows on wind conditions in passages between buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 167:87-100.
|
[5] |
Bilal M, Birkelund Y, Homola M, et al. Wind over complex terrain-Microscale modelling with two types of mesoscale winds at Nygårdsfjell[J]. Renewable Energy, 2016, 99:647-653.
|
[6] |
Blocken B, Stathopoulos T, Carmeliet J. CFD simulation of the atmospheric boundary layer:wall function problems[J]. Atmospheric Environment, 2007, 41(2):238-252.
|
[7] |
Yan B W, Li Q S, He Y C, et al. RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε, model[J]. Environmental Fluid Mechanics, 2016, 16(1):1-23.
|
[8] |
Lopes A S, Palma J M L M, Castro F A. Simulation of the Askervein flow. Part 2:Large-eddy simulations[J]. Boundary-Layer Meteorology, 2007, 125(1):85-108.
|
[9] |
Liu Z, Ishihara T, He X, et al. LES study on the turbulent flow fields over complex terrain covered by vegetation canopy[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 155:60-73.
|
[10] |
张来平, 贺立新, 刘伟, 等. 基于非结构/混合网格的高阶精度格式研究进展[J]. 力学进展, 2013, 43(2):202-236. Zhang Laiping, He Lixin, Liu Wei, et al. High order accuracy scheme research based on unstructure/hybrid grid[J]. Advances In Mechanics, 2013, 43(2):202-236. (in Chinese)
|
[11] |
Patera A T. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3):468-488.
|
[12] |
Korczak K Z, Patera A T. An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry[J]. Journal of Computational Physics, 1986, 62(2):361-382.
|
[13] |
Komatitsch D, Vilotte J P. The spectral element method:an efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America, 2012, 88(2):368-392.
|
[14] |
Lee U. Spectral element method in structural dynamics[M]. Singapore:J. Wiley & Sons Asia, 2009.
|
[15] |
Giraldo F X, Warburton T. A nodal triangle-based spectral element method for the shallow water equations on the sphere[J]. Journal of Computational Physics, 2005, 207(1):129-150.
|
[16] |
Fischer P F, Lottes J W, Kerkemeier S G. Nek5000 Web Page[CP]. http://nek5000.mcs.anl.gov,2008.
|
[17] |
Smagorinsky J S. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3):99-164.
|
[18] |
Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids, 1991, 3(7):1760-1965.
|
[19] |
Lilly D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids, 1992, 4(4):633-633.
|
[20] |
Kanchi H, Sengupta K, Mashayek F. Effect of turbulent inflow boundary condition in LES of flow over a backward-facing step using spectral element method[J]. International Journal of Heat & Mass Transfer, 2013, 62(1):782-793.
|
[21] |
Taylor P A, Teunissen H W. The Askervein hill project:overview and background data[J]. Boundary-Layer Meteorology, 1987, 39(1-2):15-39.
|
[22] |
梁思超, 张晓东, 康顺. 复杂地形风场绕流数值模拟方法[J]. 工程热物理学报, 2011, 32(6):945-948. Liang Sichao, Zhang Xiaodong, Kang Shun. Numerical simulation for wind flow around complex terrain[J]. Journal of Engineering Thermophysics, 2011, 32(6):945-948. (in Chinese)
|
[23] |
Stangroom P. CFD modelling of wind flow over terrain[D]. Nottingham:University of Nottingham, 2004.
|
[24] |
吕振峰. 复杂地形对风速分布影响的数值模拟研究[D]. 昆明, 昆明理工大学, 2015. Lü Zhenfeng. Research on influence of complex terrain on wind speed distribution of wind field[D]. Kunming:Kunming University of Science and Technology, 2015. (in Chinese)
|
[25] |
邓院昌, 刘沙, 余志, 等. 实际地形风场CFD模拟中粗糙度的影响分析[J]. 太阳能学报, 2010, 31(12):1644-1648. Deng Yuanchang, Liu Sha, Yu Zhi, et al. Research on roughness of CFD simulation on complex terrain[J]. Acta Energiae Solaris Sinica, 2010, 31(12):1644-1648. (in Chinese)
|
[26] |
Karamanos G S, Sherwin S J. A high order splitting scheme for the Navier-Stokes equations with variable viscosity[J]. Applied Numerical Mathematics, 2000, 33(1-4):455-462.
|
[27] |
Castro F A, Palma J M L M, Lopes A S. Simulation of the Askervein flow. part 1:reynolds averaged navier-stokes equations (k ∈ turbulence model)[J]. Boundary-Layer Meteorology, 2003, 107(3):501-530.
|