WANG Pi-guang, ZHAO Mi, LI Hui-fang, DU Xiu-li. A HIGH-ACCURACY CYLINDRICAL ARTIFICIAL BOUNDARY CONDITION: WATER-CYLINDER INTERACTION PROBLEM[J]. Engineering Mechanics, 2019, 36(1): 88-95. DOI: 10.6052/j.issn.1000-4750.2017.10.0787
Citation: WANG Pi-guang, ZHAO Mi, LI Hui-fang, DU Xiu-li. A HIGH-ACCURACY CYLINDRICAL ARTIFICIAL BOUNDARY CONDITION: WATER-CYLINDER INTERACTION PROBLEM[J]. Engineering Mechanics, 2019, 36(1): 88-95. DOI: 10.6052/j.issn.1000-4750.2017.10.0787

A HIGH-ACCURACY CYLINDRICAL ARTIFICIAL BOUNDARY CONDITION: WATER-CYLINDER INTERACTION PROBLEM

More Information
  • Received Date: October 25, 2017
  • Revised Date: January 30, 2018
  • A high-accuracy cylindrical artificial boundary condition (ABC) for water-cylinder dynamic interaction problem is presented to simulate the truncated infinite domain. Firstly, according to the wave equation and boundary conditions for the three-dimensional compressible water, an exact ABC that is global in time and space is developed by using the method of separation of variables. Secondly, the dynamic-stiffness of the cylindrical ABC is rewritten as a nested form of the two-dimensional linear and circular dynamic-stiffness. Thirdly, a high-accuracy ABC that is local in time but global in space is obtained by applying the temporal localization method. Fourthly, the resulted high-accuracy ABC is discretized using finite element method. Lastly, a symmetric second-order ordinary differential equations in time is developed by coupling the results with the finite element equation of the near field. The finite equation can be solved by explicit time integration algorithm. Numerical example demonstrates that the presented ABC is accurate, efficient and stable.
  • [1]
    项海帆. 21世纪世界桥梁工程的展望[J]. 土木工程学报, 2000, 33(3):1-6. Xiang Haifan. Prospect of world's bridge projects in 21st century[J]. China Civil Engineering Journal, 2000, 33(3):1-6. (in Chinese)
    [2]
    Zhang D, Zhang X, He J, et al. Offshore wind energy development in China:Current status and future perspective[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):467-4684.
    [3]
    闫静茹, 路德春, 杜修力, 等. 港珠澳大桥工程人工岛三维非线性地震反应分析[J].世界地震工程, 2016, 32(1):161-168. Yan Jingru, Lu Dechun, Du Xiuli, et al. Threedimensional nonlinear seismic response analysis of artificial island of Hong Kong-Zhuhai-Macao bridge project[J]. World Earthquake Engineering, 2016, 32(1):161-168. (in Chinese)
    [4]
    黄信, 李忠献. 动水压力作用对深水桥墩地震响应的影响[J]. 土木工程学报, 2011, 44(1):65-73. Huang Xin, Li Zhongxian. Influence of hydrodynamic pressure on seismic responses of bridge piers in deep water[J]. China Civil Engineering Journal, 2011, 44(1):65-73. (in Chinese)
    [5]
    李忠献, 黄信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3):120-125. Li Zhongxian, Huang Xin. Influence of traveling wave effect on seismic responses of continuous rigid-framed bridge in deep water[J]. Engineering Mechanics, 2013, 30(3):120-125. (in Chinese)
    [6]
    张文学, 黄荐, 陈盈, 等. 渡槽结构考虑流固耦合的横向地震响应简化计算公式[J]. 工程力学, 2017, 34(8):69-75. Zhang Wenxue, Huang Jian, Chen Ying, et al. A simplified formula for the calculation of the transverse seismic response of aqueducts considering fluid-structure interaction[J]. Engineering Mechanics, 2017, 34(8):69-75. (in Chinese)
    [7]
    Liaw C Y, Chopra A K. Dynamics of towers surrounded by water[J]. Earthquake Engineering and Structural Dynamics, 1974, 3(1):33-49.
    [8]
    Li Q, Yang W L. An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake[J]. Ocean Engineering, 2013, 72:241-256.
    [9]
    Du X L, Wang P G, Zhao M. Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain[J]. Ocean Engineering, 2014, 85:44-53.
    [10]
    黄信, 李忠献. 考虑水底柔性反射边界的深水桥墩地震动水压力分析[J]. 工程力学, 2012, 29(7):102-116. Huang Xin, Li Zhongxian. Earthquake induced hydrodynamic pressure of bridge pier in deep water with flexible reflecting boundary[J]. Engineering Mechanics, 2012, 29(7):102-116. (in Chinese)
    [11]
    赖伟, 王君杰, 胡世德. 地震下桥墩动水压力分析[J]. 同济大学学报, 2004, 32(1):1-5. Lai Wei, Wang Junjie, Hu Shide. Earthquake induced hydrodynamic pressure on bridge pier[J]. Journal of Tongji University, 2004, 32(1):1-5. (in Chinese)
    [12]
    Williams A N. Analysis of the base-excited response of intake-outlet towers by a Green's function approach[J]. Engineering Structures, 1991, 13(1):43-53.
    [13]
    Jiang H, Wang B, Bai X, et al. Simplified expression of hydrodynamic pressure on deep water cylindrical bridge piers during earthquakes[J]. Journal of Bridge Engineering, 2017, 22(6):04017014.
    [14]
    Liaw C Y, Chopra A K. Earthquake analysis of axisymmetric towers partially submerged in water[J]. Earthquake Engineering and Structural Dynamics, 1975, 3(3):233-248.
    [15]
    刘浪, 杨万理, 李乔. 深水桥梁墩水耦合抗震分析方法[J]. 西南交通大学学报, 2015, 50(3):449-453. Liu Lang, Yang Wanli, Li Qiao. Seismic analysis method of deep-water bridge pier and water coupling[J]. Journal of Southwest Jiaotong University, 2015, 50(3):449-453. (in Chinese)
    [16]
    刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6):46-51. Liu Jingbo, Wang Zhenyu, Du Xiuli, et al. Threedimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6):46-51. (in Chinese)
    [17]
    杜修力, 赵密. 一种新的高阶弹簧-阻尼-质量边界-无限域圆柱对称波动问题[J]. 力学学报, 2009, 41(2):207-215. Du Xiuli, Zhao Mi. A novel high-order spring-dashpotmass boundary for cylindrical-symmetry wave motions in infinite domain[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2):207-215. (in Chinese)
    [18]
    赵密, 杜修力. 时间卷积的局部高阶弹簧-阻尼-质量模型[J]. 工程力学, 2009, 26(5):8-18. Zhao Mi, Du Xiuli. High-order model of spring-dashpotmass model for localizing time convolution[J]. Engineering Mechanics, 2009, 26(5):8-18. (in Chinese)
    [19]
    赵密, 杜修力, 刘晶波. 一种高阶精度人工边界条件:出平面外域波动问题[J]. 工程力学, 2012, 29(4):7-14. Zhao Mi, Du Xiuli, Liu Jingbo. A high-order accurate artificial boundary condition:out-of-plane exterior wave problem[J]. Engineering Mechanics, 2012, 29(4):7-14. (in Chinese)
    [20]
    Du X L, Zhao M. Stability and identification for rational approximation of frequency response function of unbounded soil[J]. Earthquake Engineering and Structural Dynamics, 2010, 39(2):165-186.
    [21]
    Du X L, Zhao M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10):937-946.
    [22]
    Zhao M, Du X L, Liu J B, et al. Explicit finite element artificial boundary scheme for transient scalar waves in two-dimensional unbounded waveguide[J]. International Journal for Numerical Methods in Engineering, 2011, 87(11):1073-1104.
    [23]
    赵密. 近场波动有限元模拟的应力型时域人工边界条件极其应用[D]. 北京:北京工业大学, 2009. Zhao Mi. Stress-type time-domain artificial boundary condition for finite-element simulation of near-field wave motion and its engineering application[D]. Beijing:Beijing University of Technology, 2009. (in Chinese)
    [24]
    Wang J T, Zhang C H, Du X L. An explicit integration scheme for solving dynamic problems of solid and porous media[J]. Journal of Earthquake Engineering, 2008, 12(2):293-311.
  • Related Articles

    [1]LI Hui-fang, ZHAO Mi, DU Xiu-li. HIGH-PRECISION ARTIFICIAL BOUNDARY CONDITION FOR SCALAR WAVE PROPAGATION IN VERTICAL STRATIFIED MEDIA[J]. Engineering Mechanics, 2022, 39(5): 55-64. DOI: 10.6052/j.issn.1000-4750.2021.02.0112
    [2]DONG Yi-yi, XING Qin-yan, FANG Nan, YUAN Si. Application of adaptive finite element method of lines in 2D unbounded domain problems[J]. Engineering Mechanics, 2019, 36(7): 8-17. DOI: 10.6052/j.issn.1000-4750.2018.06.0351
    [3]YIN Xun-qiang, LI Jian-bo, LIN Gao. DAMPING SOLVENT STEPWISE EXTRACTION METHOD FOR EVALUTION OF INTERACTION FORCES OF UNBOUNDED SOIL IN TIME DOMAIN[J]. Engineering Mechanics, 2015, 32(9): 20-26. DOI: 10.6052/j.issn.1000-4750.2014.02.0107
    [4]CHEN Deng-hong, DU Cheng-bin. A DOUBLY ASYMPTOTIC ALGORITHM FOR SOLVING THE DYNAMIC STIFFNESS MATRIX OVER UNBOUNDED DOMAINS[J]. Engineering Mechanics, 2014, 31(6): 30-34,41. DOI: 10.6052/j.issn.1000-4750.2012.12.0991
    [5]ZHAO Mi, DU Xiu-li, LIU Jing-bo. A HIGH-ORDER ACCURATE ARTIFICIAL BOUNDARY CONDITION: OUT-OF-PLANE EXTERIOR WAVE PROBLEM[J]. Engineering Mechanics, 2012, 29(4): 7-14.
    [6]WANG Xiang, SONG Chong-min, JIN Feng. A DISCRETE HIGH-ORDER HIGDON-LIKE TRANSMITTING BOUNDARY CONDITION[J]. Engineering Mechanics, 2010, 27(2): 12-018.
    [7]SHAO Yong-bo, CEN Zhang-zhi, LI Tao, DU Zhi-fu. FRACTURE CHARACTERISTICS OF CONCRETE STRUCTURES USING SUB-DOMAIN BOUNDARY ELEMENT METHOD[J]. Engineering Mechanics, 2009, 26(8): 107-115.
    [8]LIU Jing-bo, WANG Zhen-yu, DU Xiu-li, DU Yi-xin. THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS[J]. Engineering Mechanics, 2005, 22(6): 46-51.
    [9]LIU Tian-yun, LIU Guang-ting, LIU Ying-li. A FEM MODEL FOR INFINITE MEDIA WAVE PROBLEMS[J]. Engineering Mechanics, 2002, 19(2): 22-25.
    [10]Yang Guang, Liu Zengwu. A FINITE ELEMENT-ARTIFICIAL TRANSMITTING BOUNDARY METHOD FOR ANALYZING THE EARTHQUAKE MOTIONS IN THE UNDERGROUND TUNNEL STRUCTURES[J]. Engineering Mechanics, 1994, 11(4): 122-130.
  • Cited by

    Periodical cited type(6)

    1. 李鑫,唐贞云,杜修力. 半无限介质多自由度频响函数离散时间有理近似的稳定参数识别. 工程力学. 2024(08): 1-10 . 本站查看
    2. 唐贞云,王志宇,杜修力. 时域稳定的基础频响连续有理近似参数识别方法. 工程力学. 2022(04): 29-38 . 本站查看
    3. 章旭斌,谢志南. 波动谱元模拟中透射边界稳定性分析. 工程力学. 2022(10): 26-35 . 本站查看
    4. 王晓静,赵密,王丕光,杜修力,程星磊. 地震作用下水-轴对称柱体相互作用的子结构分析方法. 工程力学. 2021(02): 27-35 . 本站查看
    5. 付浩,仝睿,宋二祥. 扭转振动数值分析的粘弹性传输边界. 工程力学. 2020(10): 1-6 . 本站查看
    6. 李述涛,刘晶波,宝鑫,陶西贵,陈一村,肖兰,贾艺凡. 采用粘弹性人工边界单元时显式算法稳定性分析. 工程力学. 2020(11): 1-11+46 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (473) PDF downloads (71) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return