Citation: | WANG Xiao-jing, ZHAO Mi, WANG Pi-guang, DU Xiu-li, CHENG Xing-lei. A SUBSTRUCTURE MODEL FOR WATER-AXISYMMETRIC CYLINDER INTERACTION DURING EARTHQUAKES[J]. Engineering Mechanics, 2021, 38(2): 27-35. DOI: 10.6052/j.issn.1000-4750.2020.01.0037 |
[1] |
项海帆. 21世纪世界桥梁工程的展望[J]. 土木工程学报, 2000, 33(3): 1 − 6. doi: 10.3321/j.issn:1000-131X.2000.03.001
Xiang Haifan. Prospect of world’s bridge projects in 21st century [J]. China Civil Engineering Journal, 2000, 33(3): 1 − 6. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.03.001
|
[2] |
Zhang D, Zhang X, He J, Chai Q. Offshore wind energy development in China: Current status and future perspective [J]. Renewable and Sustainable Energy Reviews, 2011, 15: 467 − 484.
|
[3] |
闫静茹, 路德春, 杜修力, 等. 港珠澳大桥工程人工岛三维非线性地震反应分析[J]. 世界地震工程, 2016, 32(1): 161 − 168.
Yan Jingru, Lu Dechun, Du Xiuli, et al. Three-dimensional nonlinear seismic response analysis of artificial island of Hong Kong-zhuhai-Macao Bridge Project [J]. World Earthquake Engineering, 2016, 32(1): 161 − 168. (in Chinese)
|
[4] |
黄信, 李忠献. 动水压力作用对深水桥墩地震响应的影响[J]. 土木工程学报, 2011, 44(1): 65 − 73.
Huang Xin, Li Zhongxian. Influence of hydrodynamic pressure on seismic responses of bridge piers in deep water [J]. China Civil Engineering Journal, 2011, 44(1): 65 − 73. (in Chinese)
|
[5] |
李忠献, 黄信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 − 125.
Li Zhongxian, Huang Xin. Influence of traveling wave effect on seismic responses of continuous rigid-framed bridge in deep water [J]. Engineering Mechanics, 2013, 30(3): 120 − 125. (in Chinese)
|
[6] |
张文学, 黄荐, 陈盈, 杜修力. 渡槽结构考虑流固耦合的横向地震响应简化计算公式[J]. 工程力学, 2017, 34(8): 69 − 75.
Zhang Wenxue, Huang Jian, Chen Ying, Du Xiuli. A simplified formula for the calculation of the transverse seismic response of aqueducts considering fluid-structure interaction [J]. Engineering Mechanics, 2017, 34(8): 69 − 75. (in Chinese)
|
[7] |
Kotsubo S. Seismic force effect on submerged bridge piers with elliptic cross sections [J]. Proceedings of the Third World Conference on Earthquake Engineering. 1965, 1965(2): 342 − 356.
|
[8] |
Liaw C Y, Chopra A K. Dynamics of towers surrounded by water [J]. Earthquake Engineering & Structural Dynamics, 1974, 3(1): 33 − 49.
|
[9] |
李乔, 刘浪, 杨万理. 深水桥梁墩水耦合振动试验研究与数值计算[J]. 工程力学, 2016, 33(7): 197 − 203.
Li Qiao, Liu Lang, Yang Wanli. Experimental and numerical investigation on pier-water Coupling vibration of bridges in deep water [J]. Engineering Mechanics, 2016, 33(7): 197 − 203. (in Chinese)
|
[10] |
Jiang H, Wang B, Bai X, et al. Simplified expression of hydrodynamic pressure on deepwater cylindrical bridge Piers during earthquakes [J]. Journal of Bridge Engineering, 2017, 22(6): 4017014. doi: 10.1061/(ASCE)BE.1943-5592.0001032
|
[11] |
Du X, Wang P, Zhao M. Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain [J]. Ocean Engineering, 2014, 85(2014): 44 − 53.
|
[12] |
Li Q, Yang W. An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake [J]. Ocean Engineering, 2013, 72: 241 − 256.
|
[13] |
Han R P S, Xu H. A simple and accurate added mass model for hydrodynamic fluid-structure interaction analysis [J]. Journal of the Franklin Institute, 1996, 333(6): 929 − 945. doi: 10.1016/0016-0032(96)00043-9
|
[14] |
Wang P, Zhao M, Du X. A simple added mass model for simulating elliptical cylinder vibrating in water under earthquake action [J]. Ocean Engineering, 2019, 179: 351 − 360. doi: 10.1016/j.oceaneng.2019.02.046
|
[15] |
Zhang G J, Li T Y, Zhu X, et al. Free and forced vibration characteristics of submerged finite elliptic cylindrical shell [J]. Ocean Engineering, 2017, 129: 92 − 106. doi: 10.1016/j.oceaneng.2016.11.014
|
[16] |
Liao W. Hydrodynamic interaction of flexible structures [J]. Journal of Waterway Port Coastal and Ocean Engineering, 1985, 111(4): 719 − 731. doi: 10.1061/(ASCE)0733-950X(1985)111:4(719)
|
[17] |
Liaw C Y, Chopra A K. Earthquake analysis of axisymmetric towers partially submerged in water [J]. Earthquake Engineering & Structural Dynamics, 1975, 3(3): 233 − 248.
|
[18] |
Williams A N. Earthquake response of submerged circular cylinder [J]. Ocean Engineering, 1986, 13(6): 569 − 585. doi: 10.1016/0029-8018(86)90040-5
|
[19] |
Aviles J, Li X. Hydrodynamic pressures on axisymmetric offshore structures considering seabed flexibility [J]. Computers & Structures, 2001, 79(2001): 2595 − 2606.
|
[20] |
Park W, Yun C, Pyun C. Infinite elements for evaluation of hydrodynamic forces on offshore structures [J]. Computers & Structures, 1991, 40(4): 837 − 847.
|
[21] |
Wang P, Zhao M, Du X. Short-crested, conical, and solitary wave forces on composite bucket foundation for an offshore wind turbine [J]. Journal of Renewable and Sustainable Energy, 2018, 10(2): 023305. doi: 10.1063/1.4995649
|
[22] |
Wang P, Zhao M, Du X. Simplified formula for earthquake-induced hydrodynamic pressure on round-ended and rectangular cylinders surrounded by water [J]. Journal of Engineering Mechanics, 2019, 145(2): 329 − 355.
|
[23] |
Wang P, Zhao M, Du X, et al. Simplified evaluation of earthquake-induced hydrodynamic pressure on circular tapered cylinders surrounded by water [J]. Ocean Engineering, 2018, 164: 105 − 113. doi: 10.1016/j.oceaneng.2018.06.048
|
[24] |
Zhao M, Li H, Du X, et al. Time-domain stability of artificial boundary condition coupled with finite element for dynamic and wave problems in unbounded media [J]. International Journal of Computational Method, 2018, 15(3): 1850099.
|
[25] |
王丕光, 赵密, 李会芳, 等. 一种高精度圆柱形人工边界条件: 水-柱体相互作用问题[J]. 工程力学, 2019, 36(1): 88 − 95.
Wang Piguang, Zhao Mi, Li Huifang, et al. A high-accuracy cylindrical artificial boundary condition: water-cylinder interaction problem[J]. Engineering Mechanics, 2019, 36(1): 88 − 95. (in Chinese)
|
[26] |
Wang P, Wang X, Zhao M, et al. A numerical model for earthquake-induced hydrodynamic forces and wave forces on inclined circular cylinder[J]. Ocean Engineering, 2020, 207: 107382.
|
[27] |
Song C, Wolf J P. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3−4): 329 − 355. doi: 10.1016/S0045-7825(97)00021-2
|
[28] |
Song C, Wolf J P. The scaled boundary finite-element method: analytical solution in frequency domain [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 164(1): 249 − 264.
|
[29] |
Song C, Wolf J P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method [J]. Computers & Structures, 2002, 80(2002): 183 − 197.
|
[30] |
崔灿, 蒋晗, 李映辉. 变截面梁横向振动特性半解析法[J]. 振动与冲击, 2012, 31(4): 85 − 88.
Cui Can, Jiang Han, Li Yinghui. Semi-analytical method for calculating vibration characteristics of variable cross-section beam [J]. Journal of Vibration and Shock, 2012, 31(4): 85 − 88. (in Chinese)
|
1. |
张小玲,徐英铎,王丕光,吴洁琼. 端承桩-土动力相互作用的频域子结构分析方法. 防灾减灾工程学报. 2023(04): 701-711 .
![]() | |
2. |
钟文坤,吴玖荣,傅继阳,孙连杨,黄鹏. 内置有水平挡板的矩形储液器非线性晃动分析. 工程力学. 2022(10): 190-199 .
![]() |