Citation: | ZHANG Xu-bin, XIE Zhi-nan. STABILITY ANALYSIS OF TRANSMITTING BOUNDARY IN WAVE SPECTRAL ELEMENT SIMULATION[J]. Engineering Mechanics, 2022, 39(10): 26-35. DOI: 10.6052/j.issn.1000-4750.2021.06.0428 |
[1] |
刘少林, 杨顶辉, 徐锡伟, 等. 模拟地震波传播的三维逐元并行谱元法[J]. 地球物理学报, 2021, 64(3): 993 − 1005.
LIU Shaolin, YANG Dinghui, XU Xiwei, et al. Three-dimensional element-by-element parallel spectral-element method for seismic wave modeling [J]. Chinese Journal of Geophysics, 2021, 64(3): 993 − 1005. (in Chinese)
|
[2] |
LIU J B, LI B. A unified viscous-spring artificial boundary for 3-D static and dynamic applications [J]. Science in China, 2005, 5: 570 − 584.
|
[3] |
李述涛, 刘晶波, 宝鑫, 等. 采用粘弹性人工边界单元时显式算法稳定性分析[J]. 工程力学, 2020, 37(11): 1 − 11, 46. doi: 10.6052/j.issn.1000-4750.2019.12.0755
LI Shutao, LIU Jingbo, BAO Xin, et al. Stability analysis of explicit algorithms with visco-elastic artificial boundary elements [J]. Engineering Mechanics, 2020, 37(11): 1 − 11, 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0755
|
[4] |
WU L H, ZHAO M, JENG D S, et al. A local time-domain absorbing boundary condition for scalar wave propagation in a multilayered medium [J]. Computers and Geotechnics, 2020, 128: 103809. doi: 10.1016/j.compgeo.2020.103809
|
[5] |
李会芳, 赵密, 杜修力. 竖向成层介质中标量波传播问题的高精度人工边界条件[J]. 工程力学, 2022, 39(5): 55 − 64. doi: 10.6052/j.issn.1000-4750.2021.02.0112
LI Huifang, ZHAO Mi, DU Xiuli. High-precision artificial boundary condition for scalar high wave propagation in vertical stratified media [J]. Engineering Mechanics, 2022, 39(5): 55 − 64. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0112
|
[6] |
王丕光, 赵密, 李会芳, 等. 一种高精度圆柱形人工边界条件: 水-柱体相互作用问题[J]. 工程力学, 2019, 36(1): 88 − 95. doi: 10.6052/j.issn.1000-4750.2017.10.0787
WANG Piguang, ZHAO Mi, LI Huifang, et al. A high-accuracy cylindrical artificial boundary condition: Water-cylinder interaction problem [J]. Engineering Mechanics, 2019, 36(1): 88 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.10.0787
|
[7] |
廖振鹏. 工程波动理论导论 [M]. 第二版. 北京: 科学出版社, 2002.
LIAO Zhenpeng. Introduction to wave motion theories in engineering [M]. 2nd ed. Beijing: Science Press, 2002. (in Chinese)
|
[8] |
LIAO Z P, WONG H L, YANG B P. A Transmitting boundary for transient wave analyses [J]. Scientia Sinica (Series A), 1984, 27(10): 1063 − 1076.
|
[9] |
谢志南, 郑永路, 章旭斌, 等. 弱形式时域完美匹配层——滞弹性近场波动数值模拟[J]. 地球物理学报, 2019, 62(8): 3140 − 3154. doi: 10.6038/cjg2019M0425
XIE Zhinan, ZHENG Yonglu, ZHANG Xubin, et al. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain [J]. Chinese Journal of Geophysics, 2019, 62(8): 3140 − 3154. (in Chinese) doi: 10.6038/cjg2019M0425
|
[10] |
LIU S L, LI X F, WANG W S, et al. A mixed-grid finite element method with PML absorbing boundary conditions for seismic wave modelling [J]. Journal of Geophysics & Engineering, 2014(5): 055009.
|
[11] |
MULDER W A. Spurious modes in finite-element discretizations of the wave equation may not be all that bad [J]. Applied Numerical Mathematics, 1999, 30: 425 − 445. doi: 10.1016/S0168-9274(98)00078-6
|
[12] |
DE BASABE J D, SEN M K. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations [J]. Geophysics, 2007, 72: 81 − 95.
|
[13] |
KOMATITSCH D, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation [J]. Geophysical Journal International, 1999, 139: 806 − 822. doi: 10.1046/j.1365-246x.1999.00967.x
|
[14] |
PRIMOFIORE I, BARON J, KLIN P, et al. 3D numerical modelling for interpreting topographic effects in rocky hills for seismic microzonation: The case study of Arquata del Tronto hamlet [J]. Engineering Geology, 2020, 279: 1 − 23.
|
[15] |
JAYALAKSHMI S, DHANYA J, RAGHUKANTH STG, et al. 3D seismic wave amplification in the Indo-Gangetic basin from spectral element simulations [J]. Soil Dynamics and Earthquake Engineering, 2020, 129(12): 1 − 17.
|
[16] |
KUEHNERT J, MANGENEY A, CAPDEVILLE Y, et al. Simulation of topography effects on rockfall-generated seismic signals: Application to Piton de la Fournaise Volcano [J]. Journal of Geophysical Research:Solid Earth, 2020, 125: 1 − 33.
|
[17] |
LI T F, CHEN X L, LI Z C. Development of an MTF in ADINA and its application to the study of the Yuxi Basin effect [J]. Journal of Seismology, 2021, 25: 683 − 695. doi: 10.1007/s10950-020-09979-4
|
[18] |
FANG H Y, LEI J W, ZHANG J, et al. Modelling ground‐penetrating radar wave propagation using graphics processor unit parallel implementation of the symplectic euler method [J]. Near Surface Geophysics, 2019, 17(4): 417 − 425. doi: 10.1002/nsg.12056
|
[19] |
XU G, HAMOUDA A M S, KHOO B C. Time-domain simulation of second-order irregular wave diffraction based on a hybrid water wave radiation condition [J]. Applied Mathematical Modelling, 2016, 40(7/8): 4451 − 4467. doi: 10.1016/j.apm.2015.11.034
|
[20] |
戴志军, 李小军, 侯春林. 谱元法与透射边界的配合使用及其稳定性研究[J]. 工程力学, 2015, 32(11): 40 − 50. doi: 10.6052/j.issn.1000-4750.2014.03.0196
DAI Zhijun, LI Xiaojun, HOU Chunlin. A combination usage of transmitting formula and spectral element method and the study of its stability [J]. Engineering Mechanics, 2015, 32(11): 40 − 50. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.03.0196
|
[21] |
于彦彦, 丁海平, 刘启方. 透射边界与谱元法的结合及对波动模拟精度的改进[J]. 振动与冲击, 2017, 32(2): 13 − 22.
YU Yanyan, DING Haiping, LIU Qifang. Integration of transmitting boundary and spectral-element method and improvement on the accuracy of wave motion simulation [J]. Journal of Vibration and Shock, 2017, 32(2): 13 − 22. (in Chinese)
|
[22] |
XING H J, LI X J, LI H J, et al. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling [J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106218. doi: 10.1016/j.soildyn.2020.106218
|
[23] |
LIAO Z P, LIU J B. Numerical instabilities of a local transmitting boundary [J]. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 65 − 77.
|
[24] |
景立平, 廖振鹏, 邹经湘. 多次透射公式的一种高频失稳机制[J]. 地震工程与工程振动, 2002, 22(1): 7 − 13. doi: 10.3969/j.issn.1000-1301.2002.01.002
JING Liping, LIAO Zhenpeng, ZOU Jingxiang. A high-frequency instability mechanism in numerical realization of multi-transmitting formula [J]. Earthquake Engineering and Engineering Vibration, 2002, 22(1): 7 − 13. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.01.002
|
[25] |
TREFETHEN L N. Stability of finite-difference models containing two boundaries or interfaces [J]. Mathematics of Computation, 1985, 45(172): 279 − 300. doi: 10.1090/S0025-5718-1985-0804924-2
|
[26] |
廖振鹏, 周正华, 张艳红. 波动数值模拟中透射边界的稳定实现[J]. 地球物理学报, 2002, 45(4): 554 − 568. doi: 10.1002/cjg2.269
LIAO Zhenpeng, ZHOU Zhenghua, ZHANG Yanhong. Stable implementation of transmitting boundary in numerical simulation of wave motion [J]. Chinese Journal of Geophysics, 2002, 45(4): 554 − 568. (in Chinese) doi: 10.1002/cjg2.269
|
[27] |
谢志南, 廖振鹏. 透射边界高频失稳机理及其消除方法–SH波动[J]. 力学学报, 2012, 44(4): 745 − 752. doi: 10.6052/0459-1879-11-312
XIE Zhinan, LIAO Zhenpeng. Mechanism of high frequency instability caused by transmitting boundary and method of its elimination——SH wave [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 745 − 752. (in Chinese) doi: 10.6052/0459-1879-11-312
|
[28] |
章旭斌, 廖振鹏, 谢志南. 透射边界高频耦合失稳机理及稳定实现——SH波动[J]. 地球物理学报, 2015(10): 197 − 206.
ZHANG Xubin, LIAO Zhenpeng, XIE Zhinan. Mechanism of high frequency coupling instability and stable implementation for transmitting boundary——SH wave motion [J]. Chinese Journal of Geophysics, 2015(10): 197 − 206. (in Chinese)
|
[29] |
周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施[J]. 力学学报, 2001, 33(4): 550 − 554. doi: 10.3321/j.issn:0459-1879.2001.04.015
ZHOU Zhenghua, LIAO Zhenpeng. A measure for eliminating drift instability of the multi-transmitting formula [J]. Chinese Journal of Theoretical and Applied Mechanics, 2001, 33(4): 550 − 554. (in Chinese) doi: 10.3321/j.issn:0459-1879.2001.04.015
|
[30] |
TANG H, RONG M S. An improved wave motion input method for application of multi-transmitting boundary [J]. Wave Motion, 2020, 97: 1 − 16.
|
[31] |
BEAM R M, WARMING R F, YEE H C. Stability analysis of numerical boundary conditions and implicit difference approximations for hyperbolic equations [J]. Journal of Computational Physics, 1982, 48(2): 200 − 222. doi: 10.1016/0021-9991(82)90047-X
|
[32] |
章旭斌, 谢志南, 廖振鹏. SH波动模拟中透射边界反射放大失稳研究[J]. 哈尔滨工程大学学报, 2019, 40(6): 1031 − 1035.
ZHANG Xubin, XIE Zhinan, LIAO Zhenpeng. Study on reflection amplification instability of transmitting boundary in SH wave simulation [J]. Journal of Harbin Engineering University, 2019, 40(6): 1031 − 1035. (in Chinese)
|
[33] |
POZRIKIDIS C. Introduction to finite and spectral element methods using MATLAB [M]. New York: Chapman & Hall/CRC, 2005.
|
1. |
李小军,张恂,邢浩洁. 基于动态人工波速的透射边界. 力学学报. 2024(10): 2924-2935 .
![]() | |
2. |
何卫平,杜修力,陈平,刘聪宇,王峰. 基于场址复杂入射波场的非一致波动输入模型. 工程力学. 2024(12): 21-29+79 .
![]() | |
3. |
黄杰,卢志飞,陶然. ABAQUS黏弹性人工边界插件程序开发. 盐城工学院学报(自然科学版). 2024(04): 38-47 .
![]() | |
4. |
于彦彦,芮志良,丁海平. 三维局部场地地震波散射问题谱元并行模拟方法. 力学学报. 2023(06): 1342-1354 .
![]() |