ZHANG Xu-bin, XIE Zhi-nan. STABILITY ANALYSIS OF TRANSMITTING BOUNDARY IN WAVE SPECTRAL ELEMENT SIMULATION[J]. Engineering Mechanics, 2022, 39(10): 26-35. DOI: 10.6052/j.issn.1000-4750.2021.06.0428
Citation: ZHANG Xu-bin, XIE Zhi-nan. STABILITY ANALYSIS OF TRANSMITTING BOUNDARY IN WAVE SPECTRAL ELEMENT SIMULATION[J]. Engineering Mechanics, 2022, 39(10): 26-35. DOI: 10.6052/j.issn.1000-4750.2021.06.0428

STABILITY ANALYSIS OF TRANSMITTING BOUNDARY IN WAVE SPECTRAL ELEMENT SIMULATION

More Information
  • Received Date: June 04, 2021
  • Revised Date: September 08, 2021
  • Available Online: September 16, 2021
  • The stability of artificial boundary condition is the premise to obtain reliable simulation results in infinite wave simulation. The numerical schemes combining spectral element method and transmitting boundary with high order accuracy show better numerical accuracy and stability, but there still exits instability problem. The mechanism of instability and stability condition of transmitting boundary is still not known, and the corresponding theoretical analysis is extremely lacking. Aiming at the stability of transmitting boundary in spectral element method, according to the periodic extension property of the spectral element nodes that are not evenly spaced, the vector forms of spectral element method and transmitting boundary numerical scheme are presented. Based on the vector form, the reflection coefficient of transmitting boundary is deduced. Then the stability condition of transmitting boundary is obtained by guaranteeing the reflection coefficients of the real mode and all spurious modes in spectral element method are less than or equal to one. The stability condition shows the relationship between dimensionless parameter of transmitting boundary and that of spectral element method, that means the ratio of the artificial wave velocity to the physical wave velocity is limited to a certain range. Meanwhile, it is revealed that the mechanism of instability is the multi-reflection amplification of the spurious modes caused by the artificial boundary in the finite calculation area. Finally, the stability condition of transmitting boundary is verified by numerical experiments.
  • [1]
    刘少林, 杨顶辉, 徐锡伟, 等. 模拟地震波传播的三维逐元并行谱元法[J]. 地球物理学报, 2021, 64(3): 993 − 1005.

    LIU Shaolin, YANG Dinghui, XU Xiwei, et al. Three-dimensional element-by-element parallel spectral-element method for seismic wave modeling [J]. Chinese Journal of Geophysics, 2021, 64(3): 993 − 1005. (in Chinese)
    [2]
    LIU J B, LI B. A unified viscous-spring artificial boundary for 3-D static and dynamic applications [J]. Science in China, 2005, 5: 570 − 584.
    [3]
    李述涛, 刘晶波, 宝鑫, 等. 采用粘弹性人工边界单元时显式算法稳定性分析[J]. 工程力学, 2020, 37(11): 1 − 11, 46. doi: 10.6052/j.issn.1000-4750.2019.12.0755

    LI Shutao, LIU Jingbo, BAO Xin, et al. Stability analysis of explicit algorithms with visco-elastic artificial boundary elements [J]. Engineering Mechanics, 2020, 37(11): 1 − 11, 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0755
    [4]
    WU L H, ZHAO M, JENG D S, et al. A local time-domain absorbing boundary condition for scalar wave propagation in a multilayered medium [J]. Computers and Geotechnics, 2020, 128: 103809. doi: 10.1016/j.compgeo.2020.103809
    [5]
    李会芳, 赵密, 杜修力. 竖向成层介质中标量波传播问题的高精度人工边界条件[J]. 工程力学, 2022, 39(5): 55 − 64. doi: 10.6052/j.issn.1000-4750.2021.02.0112

    LI Huifang, ZHAO Mi, DU Xiuli. High-precision artificial boundary condition for scalar high wave propagation in vertical stratified media [J]. Engineering Mechanics, 2022, 39(5): 55 − 64. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0112
    [6]
    王丕光, 赵密, 李会芳, 等. 一种高精度圆柱形人工边界条件: 水-柱体相互作用问题[J]. 工程力学, 2019, 36(1): 88 − 95. doi: 10.6052/j.issn.1000-4750.2017.10.0787

    WANG Piguang, ZHAO Mi, LI Huifang, et al. A high-accuracy cylindrical artificial boundary condition: Water-cylinder interaction problem [J]. Engineering Mechanics, 2019, 36(1): 88 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.10.0787
    [7]
    廖振鹏. 工程波动理论导论 [M]. 第二版. 北京: 科学出版社, 2002.

    LIAO Zhenpeng. Introduction to wave motion theories in engineering [M]. 2nd ed. Beijing: Science Press, 2002. (in Chinese)
    [8]
    LIAO Z P, WONG H L, YANG B P. A Transmitting boundary for transient wave analyses [J]. Scientia Sinica (Series A), 1984, 27(10): 1063 − 1076.
    [9]
    谢志南, 郑永路, 章旭斌, 等. 弱形式时域完美匹配层——滞弹性近场波动数值模拟[J]. 地球物理学报, 2019, 62(8): 3140 − 3154. doi: 10.6038/cjg2019M0425

    XIE Zhinan, ZHENG Yonglu, ZHANG Xubin, et al. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain [J]. Chinese Journal of Geophysics, 2019, 62(8): 3140 − 3154. (in Chinese) doi: 10.6038/cjg2019M0425
    [10]
    LIU S L, LI X F, WANG W S, et al. A mixed-grid finite element method with PML absorbing boundary conditions for seismic wave modelling [J]. Journal of Geophysics & Engineering, 2014(5): 055009.
    [11]
    MULDER W A. Spurious modes in finite-element discretizations of the wave equation may not be all that bad [J]. Applied Numerical Mathematics, 1999, 30: 425 − 445. doi: 10.1016/S0168-9274(98)00078-6
    [12]
    DE BASABE J D, SEN M K. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations [J]. Geophysics, 2007, 72: 81 − 95.
    [13]
    KOMATITSCH D, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation [J]. Geophysical Journal International, 1999, 139: 806 − 822. doi: 10.1046/j.1365-246x.1999.00967.x
    [14]
    PRIMOFIORE I, BARON J, KLIN P, et al. 3D numerical modelling for interpreting topographic effects in rocky hills for seismic microzonation: The case study of Arquata del Tronto hamlet [J]. Engineering Geology, 2020, 279: 1 − 23.
    [15]
    JAYALAKSHMI S, DHANYA J, RAGHUKANTH STG, et al. 3D seismic wave amplification in the Indo-Gangetic basin from spectral element simulations [J]. Soil Dynamics and Earthquake Engineering, 2020, 129(12): 1 − 17.
    [16]
    KUEHNERT J, MANGENEY A, CAPDEVILLE Y, et al. Simulation of topography effects on rockfall-generated seismic signals: Application to Piton de la Fournaise Volcano [J]. Journal of Geophysical Research:Solid Earth, 2020, 125: 1 − 33.
    [17]
    LI T F, CHEN X L, LI Z C. Development of an MTF in ADINA and its application to the study of the Yuxi Basin effect [J]. Journal of Seismology, 2021, 25: 683 − 695. doi: 10.1007/s10950-020-09979-4
    [18]
    FANG H Y, LEI J W, ZHANG J, et al. Modelling ground‐penetrating radar wave propagation using graphics processor unit parallel implementation of the symplectic euler method [J]. Near Surface Geophysics, 2019, 17(4): 417 − 425. doi: 10.1002/nsg.12056
    [19]
    XU G, HAMOUDA A M S, KHOO B C. Time-domain simulation of second-order irregular wave diffraction based on a hybrid water wave radiation condition [J]. Applied Mathematical Modelling, 2016, 40(7/8): 4451 − 4467. doi: 10.1016/j.apm.2015.11.034
    [20]
    戴志军, 李小军, 侯春林. 谱元法与透射边界的配合使用及其稳定性研究[J]. 工程力学, 2015, 32(11): 40 − 50. doi: 10.6052/j.issn.1000-4750.2014.03.0196

    DAI Zhijun, LI Xiaojun, HOU Chunlin. A combination usage of transmitting formula and spectral element method and the study of its stability [J]. Engineering Mechanics, 2015, 32(11): 40 − 50. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.03.0196
    [21]
    于彦彦, 丁海平, 刘启方. 透射边界与谱元法的结合及对波动模拟精度的改进[J]. 振动与冲击, 2017, 32(2): 13 − 22.

    YU Yanyan, DING Haiping, LIU Qifang. Integration of transmitting boundary and spectral-element method and improvement on the accuracy of wave motion simulation [J]. Journal of Vibration and Shock, 2017, 32(2): 13 − 22. (in Chinese)
    [22]
    XING H J, LI X J, LI H J, et al. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling [J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106218. doi: 10.1016/j.soildyn.2020.106218
    [23]
    LIAO Z P, LIU J B. Numerical instabilities of a local transmitting boundary [J]. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 65 − 77.
    [24]
    景立平, 廖振鹏, 邹经湘. 多次透射公式的一种高频失稳机制[J]. 地震工程与工程振动, 2002, 22(1): 7 − 13. doi: 10.3969/j.issn.1000-1301.2002.01.002

    JING Liping, LIAO Zhenpeng, ZOU Jingxiang. A high-frequency instability mechanism in numerical realization of multi-transmitting formula [J]. Earthquake Engineering and Engineering Vibration, 2002, 22(1): 7 − 13. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.01.002
    [25]
    TREFETHEN L N. Stability of finite-difference models containing two boundaries or interfaces [J]. Mathematics of Computation, 1985, 45(172): 279 − 300. doi: 10.1090/S0025-5718-1985-0804924-2
    [26]
    廖振鹏, 周正华, 张艳红. 波动数值模拟中透射边界的稳定实现[J]. 地球物理学报, 2002, 45(4): 554 − 568. doi: 10.1002/cjg2.269

    LIAO Zhenpeng, ZHOU Zhenghua, ZHANG Yanhong. Stable implementation of transmitting boundary in numerical simulation of wave motion [J]. Chinese Journal of Geophysics, 2002, 45(4): 554 − 568. (in Chinese) doi: 10.1002/cjg2.269
    [27]
    谢志南, 廖振鹏. 透射边界高频失稳机理及其消除方法–SH波动[J]. 力学学报, 2012, 44(4): 745 − 752. doi: 10.6052/0459-1879-11-312

    XIE Zhinan, LIAO Zhenpeng. Mechanism of high frequency instability caused by transmitting boundary and method of its elimination——SH wave [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 745 − 752. (in Chinese) doi: 10.6052/0459-1879-11-312
    [28]
    章旭斌, 廖振鹏, 谢志南. 透射边界高频耦合失稳机理及稳定实现——SH波动[J]. 地球物理学报, 2015(10): 197 − 206.

    ZHANG Xubin, LIAO Zhenpeng, XIE Zhinan. Mechanism of high frequency coupling instability and stable implementation for transmitting boundary——SH wave motion [J]. Chinese Journal of Geophysics, 2015(10): 197 − 206. (in Chinese)
    [29]
    周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施[J]. 力学学报, 2001, 33(4): 550 − 554. doi: 10.3321/j.issn:0459-1879.2001.04.015

    ZHOU Zhenghua, LIAO Zhenpeng. A measure for eliminating drift instability of the multi-transmitting formula [J]. Chinese Journal of Theoretical and Applied Mechanics, 2001, 33(4): 550 − 554. (in Chinese) doi: 10.3321/j.issn:0459-1879.2001.04.015
    [30]
    TANG H, RONG M S. An improved wave motion input method for application of multi-transmitting boundary [J]. Wave Motion, 2020, 97: 1 − 16.
    [31]
    BEAM R M, WARMING R F, YEE H C. Stability analysis of numerical boundary conditions and implicit difference approximations for hyperbolic equations [J]. Journal of Computational Physics, 1982, 48(2): 200 − 222. doi: 10.1016/0021-9991(82)90047-X
    [32]
    章旭斌, 谢志南, 廖振鹏. SH波动模拟中透射边界反射放大失稳研究[J]. 哈尔滨工程大学学报, 2019, 40(6): 1031 − 1035.

    ZHANG Xubin, XIE Zhinan, LIAO Zhenpeng. Study on reflection amplification instability of transmitting boundary in SH wave simulation [J]. Journal of Harbin Engineering University, 2019, 40(6): 1031 − 1035. (in Chinese)
    [33]
    POZRIKIDIS C. Introduction to finite and spectral element methods using MATLAB [M]. New York: Chapman & Hall/CRC, 2005.
  • Related Articles

    [1]BAO Xin, LIU Jing-bo, LI Shu-tao, WANG Fei. INFLUENCE ANALYSIS OF SOIL-STRUCTURE INTERACTION ON THE DYNAMIC RESPONSE OF STORAGE TANKS[J]. Engineering Mechanics, 2021, 38(S): 125-132. DOI: 10.6052/j.issn.1000-4750.2020.06.S022
    [2]TAN Hui, LIU Jing-bo, WANG Dong-yang, BAO Xin, LI Shu-tao. Comparison on artificial boundaries and seismic wave input methods in seismic analysis of underground structures[J]. Engineering Mechanics, 2018, 35(S1): 212-216,222. DOI: 10.6052/j.issn.1000-4750.2017.05.S042
    [3]QIAO Guan-dong, LOU Meng-lin. EFFECT OF VERTICAL ARTIFICIAL BOUNDARY ON SEISMIC RESPONSES ANALYSIS OF LARGE-SCALE OPEN CAISSON[J]. Engineering Mechanics, 2012, 29(增刊I): 111-114. DOI: 10.6052/j.issn.1000-4750.2011.11.S022
    [4]HE Xiang-li, LI Tong-chun. DYNAMIC ANALYSIS FOR INFINITE SATURATED FOUNDATION BASED ON GRADUAL ENLARGEMENT MESH METHOD[J]. Engineering Mechanics, 2010, 27(4): 149-152,.
    [5]WANG Xiang, SONG Chong-min, JIN Feng. A DISCRETE HIGH-ORDER HIGDON-LIKE TRANSMITTING BOUNDARY CONDITION[J]. Engineering Mechanics, 2010, 27(2): 12-018.
    [6]WANG Tian-you, DING Jie-min, LOU Meng-lin. LOAD FOR SUBWAY-INDUCED FREE FIELD VIBRATION AND ANALYSIS METHOD[J]. Engineering Mechanics, 2010, 27(1): 195-201.
    [7]YIN Hua-wei, YI Wei-jian. A CONSISTENT BOUNDARY FOR SIMULATING P-WAVE PROPAGATION INTO IN-PLANE INFINITE MEDIA[J]. Engineering Mechanics, 2008, 25(2): 22-027.
    [8]GU Yin, LIU Jing-bo. 3D CONSISTENT VISCOUS-SPRING ARTIFICIAL BOUNDARY AND VISCOUS-SPRING BOUNDARY ELEMENT[J]. Engineering Mechanics, 2007, 24(12): 31-037.
    [9]QIU Liu-chao, LIU Hua, JIN Feng. TIME-DOMAIN FINITE-ELEMENT ANALYSIS OF TWO DIMENSIONAL SEISMIC SOIL-STRUCTURE INTERACTIONS[J]. Engineering Mechanics, 2006, 23(9): 114-119.
    [10]SHANG Shou-ping, LU Hua-xi, WANG Hai-dong, YU Jun, LIU Fang-cheng. TEST INVESTIGATION AND THEORETICAL ANALYSIS OF LARGE-SCALE MODEL ON DYNAMIC SOIL-PILE–STRUCTURE INTERACTION[J]. Engineering Mechanics, 2006, 23(增刊Ⅱ): 155-166.
  • Cited by

    Periodical cited type(4)

    1. 李小军,张恂,邢浩洁. 基于动态人工波速的透射边界. 力学学报. 2024(10): 2924-2935 .
    2. 何卫平,杜修力,陈平,刘聪宇,王峰. 基于场址复杂入射波场的非一致波动输入模型. 工程力学. 2024(12): 21-29+79 . 本站查看
    3. 黄杰,卢志飞,陶然. ABAQUS黏弹性人工边界插件程序开发. 盐城工学院学报(自然科学版). 2024(04): 38-47 .
    4. 于彦彦,芮志良,丁海平. 三维局部场地地震波散射问题谱元并行模拟方法. 力学学报. 2023(06): 1342-1354 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (412) PDF downloads (84) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return