Citation: | FU Hao, TONG Rui, SONG Er-xiang. VISCOELASTIC TRANSMITTING BOUNDARY FOR NUMERICAL ANALYSIS OF TORSIONAL VIBRATION[J]. Engineering Mechanics, 2020, 37(10): 1-6. DOI: 10.6052/j.issn.1000-4750.2019.11.0685 |
[1] |
廖振鹏. 近场波动的数值模拟[J]. 力学进展, 1997, 27(2): 193 − 212.
Liao Zhenpeng. Numerical simulation of near-field wave motion [J]. Advances in Mechanics, 1997, 27(2): 193 − 212. (in Chinese)
|
[2] |
宋二祥. 无限地基数值模拟的传输边界[J]. 工程力学, 1997(A03): 613 − 619.
Song Erxiang. Transmitting boundaries for numerical simulation of infinite soil foundation [J]. Engineering Mechanics, 1997(A03): 613 − 619. (in Chinese)
|
[3] |
Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media [J]. Journal of Engineering Mechanics Division, ASCE, 1969, 95(4): 859 − 877.
|
[4] |
Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics, ASCE, 1994, 120(1): 25 − 42. doi: 10.1061/(ASCE)0733-9399(1994)120:1(25)
|
[5] |
刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6): 46 − 51. doi: 10.3969/j.issn.1000-4750.2005.06.008
Liu Jingbo, Wang Zhenyu, Du Xiuli, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems [J]. Engineering Mechanics, 2005, 22(6): 46 − 51. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.06.008
|
[6] |
刘光磊, 宋二祥. 饱和无限地基数值模拟的粘弹性传输边界[J]. 岩土工程学报, 2006, 28(12): 2128 − 2133. doi: 10.3321/j.issn:1000-4548.2006.12.001
Liu Guanglei, Song Erxiang. Visco-elastic transmitting boundary for numerical analysis of infinite saturated soil foundation [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2128 − 2133. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.12.001
|
[7] |
Du X, Zhao M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media [J]. Soil Dynamics & Earthquake Engineering, 2010, 30(10): 937 − 946.
|
[8] |
Zhao M, Wu L, Du X, et al. Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 334: 111 − 137. doi: 10.1016/j.cma.2018.01.018
|
[9] |
Li P, Song E X. A high-order time-domain transmitting boundary for cylindrical wave propagation problems in unbounded saturated poroelastic media [J]. Soil Dynamics and Earthquake Engineering, 2013, 48: 48 − 62. doi: 10.1016/j.soildyn.2013.01.006
|
[10] |
Achenbach J D. Wave propagation in elastic solids [M]. Amsterdam, London: North-Holland Publishing Company, 1973: 170 − 177.
|
[11] |
Beresford G, Whitham G B. Linear and nonlinear waves [M]. New York: John Wiley & Sons, 1974: 219 − 212.
|
[12] |
谭辉, 刘晶波, 王东洋, 等. 地下结构地震反应分析中人工边界条件和地震波动输入方法对比研究[J]. 工程力学, 2018, 35(增刊1): 212 − 216.
Tan Hui, Liu Jingbo, Wang Dongyang, et al. Comparison on artificial boundaries and seismic wave input methods in seismic analysis of underground structures [J]. Engineering Mechanics, 2018, 35(Suppl1): 212 − 216. (in Chinese)
|
[13] |
王丕光, 赵密, 李会芳, 等. 一种高精度圆柱形人工边界条件: 水-柱体相互作用问题[J]. 工程力学, 2019, 36(1): 88 − 95. doi: 10.6052/j.issn.1000-4750.2017.10.0787
Wang Piguang, Zhao Mi, Li Huifang, et al. A high-accuracy cylindrical artificial boundary condition: water-cylinder interaction problem [J]. Engineering Mechanics, 2019, 36(1): 88 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.10.0787
|