CHEN Guo-xing, XIA Gao-xu, WANG Yan-zhen, JIN Dan-dan. ONE-DIMENSIONAL NONLINEAR SEISMIC RESPONSE ANALYSIS FOR SEABED SITE EFFECT ASSESSMENT IN THE QIONGZHOU STRAIT[J]. Engineering Mechanics, 2022, 39(5): 75-85. DOI: 10.6052/j.issn.1000-4750.2021.03.0167
Citation: CHEN Guo-xing, XIA Gao-xu, WANG Yan-zhen, JIN Dan-dan. ONE-DIMENSIONAL NONLINEAR SEISMIC RESPONSE ANALYSIS FOR SEABED SITE EFFECT ASSESSMENT IN THE QIONGZHOU STRAIT[J]. Engineering Mechanics, 2022, 39(5): 75-85. DOI: 10.6052/j.issn.1000-4750.2021.03.0167

ONE-DIMENSIONAL NONLINEAR SEISMIC RESPONSE ANALYSIS FOR SEABED SITE EFFECT ASSESSMENT IN THE QIONGZHOU STRAIT

More Information
  • Received Date: March 05, 2021
  • Revised Date: May 19, 2021
  • Available Online: June 18, 2021
  • Building a sea-crossing projects constructed on the deep soft marine deposits subjected to might strong earthquakes and ensuring its seismic safety is a major engineering challenge. The typical four borehole profiles along the subsea tunnel crossing under the Qiongzhou Strait were selected to analyze the one-dimensional nonlinear site response. In the site response analysis, regional seismicity and bedrock motion characteristics, the engineering geology characteristics, and the DCZ and MKZ constitutive models for characterizing nonlinear hysteretic behavior of soil are considered in detail. The results imply that the DCZ model provides better ability to propagate the propagation of some high frequencies and medium-long period components through seabed deposits than the MKZ model. The significant amplification of seismic wave components ranging 0.6 Hz~1.1 Hz within the soils of 35 m and 80 m~160 m below the seabed surface are observed. For bedrock motion levels of 0.2 g, the calculated peak ground acceleration at the seabed surface is 0.297 g, corresponding to seismic intensity Ⅷ level, which is consistent with historical maximum earthquake effect intensity. The cumulative absolute velocity (CAV) is a more suitable proxy to characterize ground motion intensity measure according to the calculated characteristics of seabed site effects. The spectral accelerations given in the "Seismic ground motion parameters zonation map of China" at the periods from 0.05 s~0.5 s exist adverse consequences for seismic design of sea-crossing projects.
  • [1]
    陈亮, 张玉芬, 李团结, 等. 琼州海峡及周边海域沉积环境及近万年以来沉积演化[J]. 地球科学(中国地质大学学报), 2014, 39(6): 696 − 704. doi: 10.3799/dqkx.2014.065

    Chen Liang, Zhang Yufen, Li Tuanjie, et al. Sedimentary environment and its evolution of Qiongzhou Strait and nearby seas since last ten thousand years [J]. Earth Science-Journal of China University of Geosciences, 2014, 39(6): 696 − 704. (in Chinese) doi: 10.3799/dqkx.2014.065
    [2]
    李振, 彭华, 马秀敏, 等. 琼州海峡古河道及其工程地质评价[J]. 工程地质学报, 2018, 26(4): 1017 − 1024.

    Li Zhen, Peng Hua, Ma Xiumin, et al. Paleochannels and engineering geological evaluation along Qiongzhou Strait [J]. Journal of Engineering Geology, 2018, 26(4): 1017 − 1024. (in Chinese)
    [3]
    谭忠盛, 贺维国, 王梦恕. 琼州海峡工程地质条件及铁路隧道方案研究[J]. 隧道建设, 2018, 38(1): 1 − 7. doi: 10.3973/j.issn.2096-4498.2018.01.001

    Tan Zhongsheng, He Weiguo, Wang Mengshu. Study of engineering geological conditions and railway tunnel scheme across Qiongzhou Strait [J]. Tunnel Construction, 2018, 38(1): 1 − 7. (in Chinese) doi: 10.3973/j.issn.2096-4498.2018.01.001
    [4]
    孙田, 陈国兴, 周恩全, 等. 琼州海峡100 m以浅海洋土动剪切模量比和阻尼比试验研究[J]. 岩土工程学报, 2013, 35(增刊 2): 375 − 382.

    Sun Tian, Chen Guoxing, Zhou Enquan, et al. Experimental study on dynamic shear modulus ratio and damping ratio of marine soils in Qiongzhou Strait with depth less than 100 m [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl 2): 375 − 382. (in Chinese)
    [5]
    孙田, 陈国兴, 周恩全, 等. 深层海床粉质黏土动剪切模量和阻尼比试验研究[J]. 土木工程学报, 2012, 45(增刊 1): 9 − 14.

    Sun Tian, Chen Guoxing, Zhou Enquan, et al. Experimental research on the dynamic shear modulus and the damping ratio of deep-seabed marine silty clay [J]. Chinese Journal of Geotechnical Engineering, 2012, 45(Suppl 1): 9 − 14. (in Chinese)
    [6]
    Chen Guoxing, Jin Dandan, Zhu Jiao, et al. Nonlinear analysis on seismic site response of Fuzhou Basin, China [J]. Bulletin of the Seismological Society of America, 2015, 105(2A): 928 − 949. doi: 10.1785/0120140085
    [7]
    陈国兴, 李磊, 丁杰发, 等. 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056 − 3065, 3076.

    Chen Guoxing, Li Lei, Ding Jiefa, et al. Nonlinear seismic response characteristics of extremely deep deposit site with volcanic hard rock interlayers [J]. Rock and Soil Mechanics, 2020, 41(9): 3056 − 3065, 3076. (in Chinese)
    [8]
    Chen Guoxing, Ruan Bin, Zhao Kai, et al. Nonlinear Response Characteristics of undersea shield tunnel subjected to strong earthquake motions [J]. Journal of Earthquake Engineering, 2020, 24(3): 351 − 380. doi: 10.1080/13632469.2018.1453416
    [9]
    Ruan Bin, Zhao Kai, Wang Suyang, et al. Numerical modeling of seismic site effects in a shallow estuarine bay (Suai Bay, Shantou, China) [J]. Engineering Geology, 2019, 260: 105233. doi: 10.1016/j.enggeo.2019.105233
    [10]
    Chen Guoxing, Wang Yangzhen, Zhao Dingfeng, et al. A new effective stress method for nonlinear site response analyses [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595 − 1611.
    [11]
    GB18306−2015, 中国地震动参数区划图 [S]. 北京: 中国质检出版社, 2015.

    GB 18306−2015, Seismic ground motion parameters zonation map of Chian [S]. Beijing: China Quality Inspection, 2015. (in Chinese)
    [12]
    刘晶波, 谷音, 杜义欣. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070 − 1075. doi: 10.3321/j.issn:1000-4548.2006.09.004

    Liu Jingbo, Gu Yin, Du Yixin. Consistent viscous- spring artificial boundaries and viscous-spring boundary elements [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070 − 1075. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.004
    [13]
    李述涛, 刘晶波, 宝鑫, 等. 采用粘弹性人工边界单元时显式算法稳定性分析[J]. 工程力学, 2020, 37(11): 1 − 11, 46. doi: 10.6052/j.issn.1000-4750.2019.12.0755

    Li Shutao, Liu Jingbo, Bao Xin, et al. Stability analysis of explicit integration algorithm with viscoelastic artificial boundary elements [J]. Engineering Mechanics, 2020, 37(11): 1 − 11, 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0755
    [14]
    Miao Yu, Yao Erlei, Ruan Bin, et al. Seismic response of shield tunnel subjected to spatially varying earthquake ground motions [J]. Tunneling and Underground Space Technology, 2018, 77: 216 − 226. doi: 10.1016/j.tust.2018.04.006
    [15]
    Li Furong, Chen Guoxing, Arkady Serikov. Nonlinear seismic response characteristics of CAP1400 nuclear island structure on soft rock sites [J]. Science and Technology of Nuclear Installations, 2020, 4: 1 − 17.
    [16]
    朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129 − 142. doi: 10.6052/j.issn.1000-4750.2020.02.0121

    Zhu Shengdong, Chen Guoxing, Jiang Pengcheng, et al. 3D nonlinear response characteristics of pile-raft- supported AP1000 nuclear island building in soft deposits subjected to strong ground motions [J]. Engineering Mechanics, 2021, 38(1): 129 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0121
    [17]
    Hashash Y M A, Groholski D R, Philips C A, et al. DEEPSOIL V6.0, User manual and tutorial [R]. Urbana, Illinois: Board of Trustees of University of Illinois at Urbana- Champaign, 2014.
    [18]
    Boore D M, Smith C E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off the coast of southern California [J]. Bulletin of the Seismological Society of America, 1999, 89(1): 260 − 274. doi: 10.1785/BSSA0890010260
    [19]
    Li C, Hao H, Li H N, et al. Theoretical modeling and numerical simulation of seismic motions at seafloor [J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 220 − 225. doi: 10.1016/j.soildyn.2015.05.016
    [20]
    Nakamura. What is the Nakamura method [J]. Seismological Research Letters, 2019, 90(4): 1437 − 1443.
    [21]
    陈国兴, 丁杰发, 方怡, 等. 场地类别分类方案研究[J]. 岩土力学, 2020, 41(11): 3510 − 3522, 3582.

    Chen Guoxing, Ding Jiefa, Fang Yi, et al. Investigation of seismic site classification method [J]. Rock and Soil Mechanics, 2020, 41(11): 3510 − 3522, 3582. (in Chinese)
    [22]
    袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10): 95 − 102, 122.

    Yuan Xiaoming, Li Ruishan, Sun Rui. A new generation method for earthquake response analysis of soil layers [J]. China Civil Engineering Journal, 2016, 49(10): 95 − 102, 122. (in Chinese)
    [23]
    王彦臻, 赵丁凤, 陈国兴, 等. 一维场地地震反应非线性有效应力分析法及其验证[J]. 岩土工程学报, 2021, 43(3): 502 − 510.

    Wang Yanzhen, Zhao Dingfeng, Chen Guoxing, et al. A new nonlinear effective stress method for one-dimensional seismic site response analysis and its validation [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 502 − 510. (in Chinese)
    [24]
    Montgomery J, Boulanger R W. Effects of spatial variability on liquefaction-induced settlement and lateral spreading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 1 − 15.
  • Related Articles

    [1]GAO Yong-wu, WANG Dong-ming, CHEN Jing-yi. INFLUENCE OF PROBABILISTIC SEISMIC VULNERABILITY ANALYSIS ON GROUND MOTION DETERMINATION METHOD WITH CONSIDERING SITE EFFECT[J]. Engineering Mechanics, 2025, 42(4): 139-149. DOI: 10.6052/j.issn.1000-4750.2022.12.1078
    [2]DING Yang, SHI Yun-dong, ZONG Liang, YOU Bi-shi, LIU Qian, CHENG Jun-sen, XU Song-tao. RESEARCH ON SEISMIC RESPONSE CHARACTERISTICS OF HUB STRUCTURES[J]. Engineering Mechanics, 2023, 40(4): 1-11. DOI: 10.6052/j.issn.1000-4750.2022.08.ST06
    [3]FENG Xia, ZONG Meng-fan, TIAN Yi, MEI Guo-xiong, WU Wen-bing. APPROXIMATE SOLUTION FOR ONE-DIMENSIONAL NONLINEAR CONSOLIDATION THEORY OF SOIL CONSIDERING THE TIME EFFECT OF BOUNDARY DRAINAGE[J]. Engineering Mechanics, 2023, 40(1): 100-110. DOI: 10.6052/j.issn.1000-4750.2021.07.0575
    [4]MA Jian-jun, NIE Meng-qiang, GAO Xiao-juan, QIN Zi-guo. Nonlinear free vibration of a beam on Winkler foundation with a consideration of soil mass effect[J]. Engineering Mechanics, 2018, 35(S1): 150-155. DOI: 10.6052/j.issn.1000-4750.2017.06.S027
    [5]WANG Du-guo, ZHAO Cheng-gang. SEISMIC ANALYSIS OF LONG-SPAN CONTINUOUS RIGID FRAME BRIDGE CONSIDERING SITE NONLINEARITY, TOPOGRAPHY EFFECT AND SOIL-STRUCTURE DYNAMIC INTERACTION UNDER OBLIQUE INCIDENCE[J]. Engineering Mechanics, 2017, 34(4): 32-41. DOI: 10.6052/j.issn.1000-4750.2015.03.0180
    [6]LIANG Ai-ting, WANG Shi-bin, LI Lin-an, LIU Xi-jun, WANG Zhi-yong, WEN Xu-ming. STUDY ON INFLUENCE OF SOIL-PILE NONLINEAR INTERACTION ON VEHICLE-BRIDGE COUPLING VIBRATION[J]. Engineering Mechanics, 2014, 31(12): 96-103. DOI: 10.6052/j.issn.1000-4750.2013.06.0578
    [7]QIU Min-yu, ZHANG Yi-ping. A MODIFIED HARDENING SOIL MODEL CONSIDERING NONLINEAR DEGRADATION OF STIFFNESS[J]. Engineering Mechanics, 2013, 30(8): 78-82. DOI: 10.6052/j.issn.1000-4750.2012.04.0252
    [8]SHANG Shou-ping, REN Hui, ZENG Yu-lin, YU Jun. DYNAMIC BEHAVIOR ANALYSIS OF SINGLE PILES EMBEDDED IN NONLINEAR SOILS UNDER VERTICAL VIBRATION[J]. Engineering Mechanics, 2008, 25(11): 111-115.
    [9]CAO Hui, LIN Xue-peng. THE EFFECT OF NONSTATIONARY CHARACTERISTIC OF EARTHQUAKE GROUND MOTION ON THE STRUCTURAL NONLINEAR RESPONSES[J]. Engineering Mechanics, 2006, 23(12): 30-35.
    [10]Luan Maotian, Lin Gao. COMPUTATIONAL MODEL FOR NONLINEAR ANALYSIS OF SOIL SITE SEIMIC RESPONSE[J]. Engineering Mechanics, 1992, 9(1): 94-103.
  • Cited by

    Periodical cited type(7)

    1. 江志伟,杨秀仁,李霞. 强震区装配式和现浇地铁车站结构地震响应对比研究. 工程力学. 2025(01): 164-173 . 本站查看
    2. 范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 .
    3. 张治国,叶铜,张成平,PAN Yu-tao,沈安鑫,吴钟腾. 基于Pasternak海床模型的椭圆余弦波浪荷载作用下埋置管线动力响应解析解. 工程力学. 2024(01): 76-89 . 本站查看
    4. 王彦臻,范宏飞,赵凯,陈国兴,江志杰. 深厚复杂海峡场地二维非线性地震反应特性. 岩土工程学报. 2024(02): 345-356 .
    5. 刘名吉,胡进军,石昊,谭景阳. 海域地震动竖向加速度反应谱阻尼修正系数. 工程力学. 2023(04): 162-171 . 本站查看
    6. 张岩,陈国兴,赵凯,彭艳菊,江志杰,杨文保. 海洋土动剪切模量比和阻尼比预测不确定性特性. 工程力学. 2023(05): 161-171 . 本站查看
    7. 何颖,丁晓凡,刘中宪,杨德健,王岱. 考虑沉积河谷非线性放大效应的空间相关多点地震动模拟. 工程力学. 2023(10): 99-111 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (682) PDF downloads (90) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return