Citation: | JIANG Zhi-wei, YANG Xiu-ren, LI Xia. RESPONSE COMPARISONS OF PRECAST AND CAST-IN-PLACE SUBWAY STATION STRUCTURES IN THE HIGH SEISMIC INTENSITY REGION[J]. Engineering Mechanics, 2025, 42(1): 164-173. DOI: 10.6052/j.issn.1000-4750.2022.10.0904 |
The previous studies on the seismic performance of underground structures are mainly against the cast-in-place (CIP) structures. However, the precast concrete (PC) structures are assembled by prefabricated components, which are fundamentally different from the CIP structures. Whether the seismic behavior of PC stations would follow the existing understandings is unclear, which restrains the promotion and application of the PC station in the high seismic intensity regions. In the study, 3-D non-linear finite element time-history analyses of the PC and corresponding CIP subway station structures were conducted, based on the real engineering projects. The structural deformation, internal force and damage responses under the precautionary, rare and extremely rare earthquake motions at the 8-degree seismic region were compared and analyzed. The results show that the overall deformation differences of the PC and CIP stations were small, but the mortise-tenon joints of the flexible PC station could have opening deformation. Under the precautionary and rare seismic motions, the openings of joints could mitigate the seismic responses, and the damage of the PC station was smaller. However, under the extremely rare earthquake motions, the openings of joints increased, and the strain concentrated at some regions of mortises, tenons and components’ edges, and the seismic responses between the PC and CIP stations were distinct. However, because the peak value of the strain was limited and the damage area was small, the overall damage of the PC and CIP station structures was comparable in general.
[1] |
杨秀仁. 我国预制装配式地铁车站建造技术发展现状与展望[J]. 隧道建设(中英文), 2021, 41(11): 1849 − 1870.
YANG Xiuren. Development status of and outlook for construction technology for prefabricated metro stations in China [J]. Tunnel Construction, 2021, 41(11): 1849 − 1870. (in Chinese)
|
[2] |
丁鹏, 杨秀仁, 高向宇, 等. 单拱大跨预制装配式地铁车站水平与竖直的地震响应[J]. 黑龙江科技大学学报, 2018, 28(6): 630 − 637. doi: 10.3969/j.issn.2095-7262.2018.06.006
DING Peng, YANG Xiuren, GAO Xiangyu, et al. Horizontal and vertical seismic response of single-arch and large-span prefabricated subway stations [J]. Journal of Heilongjiang University of Science & Technology, 2018, 28(6): 630 − 637. (in Chinese) doi: 10.3969/j.issn.2095-7262.2018.06.006
|
[3] |
DING P, TAO L J, YANG X R, et al. Three-dimensional dynamic response analysis of a single-ring structure in a prefabricated subway station [J]. Sustainable Cities and Society, 2019, 45: 271 − 286. doi: 10.1016/j.scs.2018.11.010
|
[4] |
秦祎文, 杨桃, 郭昊天, 等. 装配式地铁车站地震响应数值分析[J]. 石家庄铁道大学学报(自然科学版), 2020, 33(4): 80 − 87. doi: 10.13319/j.cnki.sjztddxxbzrb.20190093
QIN Yiwen, YANG Tao, GUO Haotian, et al. Numerical analysis of seismic response for fabricated subway station [J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2020, 33(4): 80 − 87. (in Chinese) doi: 10.13319/j.cnki.sjztddxxbzrb.20190093
|
[5] |
武丰豪. 基于榫槽注浆式接头的全预制装配式地铁车站结构抗震性能研究[D]. 北京: 北京交通大学, 2019.
WU Fenghao. Research on seismic performance of fully prefabricated subway station structure based on mortise and groove grouting joint [D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
|
[6] |
吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941 − 948. doi: 10.3969/j.issn.0253-374x.2011.07.001
LYU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: Earthquake resilient structures [J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941 − 948. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.07.001
|
[7] |
周晓洁, 李忠献, 续丹丹, 等. 柔性连接填充墙框架结构抗震性能试验[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(2): 155 − 166.
ZHOU Xiaojie, LI Zhongxian, XU Dandan, et al. Experiment on seismic behavior of flexible connection masonry infilled frame structure [J]. Journal of Tianjin University (Science and Technology), 2015, 48(2): 155 − 166. (in Chinese)
|
[8] |
HE H F, LI Z P. Effect mechanism of connection joints in fabricated station structures [J]. Applied Sciences, 2021, 11(24): 12411927. doi: 10.3390/app112411927
|
[9] |
杨秀仁. 明挖地铁车站预制装配结构理论与实践[D]. 北京: 北京交通大学, 2020.
YANG Xiuren. Theory and application of prefabricated open-cut metro station structure [D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
|
[10] |
孙斌. 北京地铁16号线工程抗震专项论证报告[R]. 北京: 北京城建设计研究总院有限责任公司, 2011: 23 − 29.
SUN Bin. Specific demonstration report on earthquake resistance of Beijing Subway Line 16 engineering projects [R]. Beijing: Beijing Urban Construction Design & Development Group Co., Limited, 2011: 23 − 29. (in Chinese)
|
[11] |
吕悦军, 彭艳菊, 兰景岩, 等. 北京市十六号线工程场地地震安全性评价报告[R]. 北京: 中国地震局地壳应力研究所, 2011: 155 − 162.
LYU Yuejun, PENG Yanju, LAN Jingyan, et al. Report on seismic safety evaluation of engineering sites of Beijing Subway Line 16 [R]. Beijing: The Institute of Crustal Dynamics, China Earthquake Administration, 2011: 155 − 162. (in Chinese)
|
[12] |
HUO H, BOBET A, FERNÁNDEZ G, et al. Load transfer mechanisms between underground structure and surrounding ground: Evaluation of the failure of the Daikai station [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1522 − 1533. doi: 10.1061/(ASCE)1090-0241(2005)131:12(1522)
|
[13] |
TSINIDIS G, ROVITHIS E, PITILAKIS K, et al. Seismic response of box-type tunnels in soft soil: Experimental and numerical investigation [J]. Tunnelling and Underground Space Technology, 2016, 59: 199 − 214. doi: 10.1016/j.tust.2016.07.008
|
[14] |
XU C S, JIANG Z W, DU X L, et al. Property estimation of free-field sand in 1-g shaking table tests [J]. Earthquake Engineering and Engineering Vibration, 2022, 21(3): 591 − 604. doi: 10.1007/s11803-022-2105-4
|
[15] |
GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2011.
GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
|
[16] |
FENG B, XIONG F, LIU B Y, et al. Shear performance of horizontal joints in short precast concrete columns with sleeve grouted connections under cyclic loading [J]. PLoS One, 2016, 11(11): e0165988. doi: 10.1371/journal.pone.0165988
|
[17] |
ABAQUS Inc. Analysis user's guide [Z]. Providence, RI: Dassault Systèmes, 2018.
|
[18] |
韩润波, 许成顺, 许紫刚, 等. 对称地下结构抗震分析的边界强制反应位移法[J]. 工程力学, 2021, 38(5): 50 − 60. doi: 10.6052/j.issn.1000-4750.2020.02.0075
HAN Runbo, XU Chengshun, XU Zigang, et al. A boundary forced response displacement method for seismic analysis of symmetrical underground structures [J]. Engineering Mechanics, 2021, 38(5): 50 − 60. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0075
|
[19] |
陈国兴, 夏高旭, 王彦臻, 等. 琼州海峡海床地震反应特性的一维非线性分析[J]. 工程力学, 2022, 39(5): 75 − 85. doi: 10.6052/j.issn.1000-4750.2021.03.0167
CHEN Guoxing, XIA Gaoxu, WANG Yanzhen, et al. One-dimensional nonlinear seismic response analysis for seabed site effect assessment in the Qiongzhou strait [J]. Engineering Mechanics, 2022, 39(5): 75 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0167
|
[20] |
张岩, 陈国兴, 赵凯, 等. 海洋土动剪切模量比和阻尼比预测不确定性特性[J]. 工程力学, 2023, 40(5): 161 − 171. doi: 10.6052/j.issn.1000-4750.2021.10.0832
ZHANG Yan, CHEN Guoxing, ZHAO Kai, et al. Uncertainties of shear modulus reduction and damping ration curves of marine soils [J]. Engineering Mechanics, 2023, 40(5): 161 − 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0832
|
[21] |
陈国兴, 庄海洋. 基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J]. 岩土工程学报, 2005, 27(8): 860 − 864. doi: 10.3321/j.issn:1000-4548.2005.08.002
CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860 − 864. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.08.002
|
[22] |
GB 50909−2014, 城市轨道交通结构抗震设计规范[S]. 北京: 中国标准出版社, 2014.
GB 50909−2014, Code for seismic design of urban rail transit structures [S]. Beijing: Standards Press of China, 2014. (in Chinese)
|
[23] |
WANG J N. Seismic design of tunnels: a state-of-the-art approach, monograph 7 [M]. New York: Parsons Brinckerhoff Quade and Douglas, Inc., 1993: 27 − 37.
|
[24] |
XU C S, JIANG Z W, DU X L, et al. Seismic displacement and deformation analyses of a precast horseshoe segmental tunnel [J]. Tunnelling and Underground Space Technology, 2022, 124: 104476. doi: 10.1016/j.tust.2022.104476
|
[25] |
GB/T 51336−2018, 地下结构抗震设计标准[S]. 北京: 中国建筑工业出版社, 2018.
GB/T 51336−2018, Standard for seismic design of underground structures [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
|
[26] |
杨秀仁, 黄美群, 林放. 地铁车站预制装配式结构注浆式榫槽接头弯曲抵抗作用特性研究[J]. 土木工程学报, 2020, 53(2): 33 − 40. doi: 10.15951/j.tmgcxb.2020.02.004
YANG Xiuren, HUANG Meiqun, LIN Fang. Research on bending resistance characteristics of grouted mortise-tenon joints for prefabricated metro station structures [J]. China Civil Engineering Journal, 2020, 53(2): 33 − 40. (in Chinese) doi: 10.15951/j.tmgcxb.2020.02.004
|
[27] |
许学昭, 李兆平, 朱云超, 等. 装配式地铁车站结构榫槽式接头抗剪性能研究[J]. 土木工程学报, 2017, 50(增刊 2): 141 − 146. doi: 10.15951/j.tmgcxb.2017.s2.022
XU Xuezhao, LI Zhaoping, ZHU Yunchao, et al. Study on shear property of tenon groove joint of prefabricated subway station [J]. China Civil Engineering Journal, 2017, 50(Suppl 2): 141 − 146. (in Chinese) doi: 10.15951/j.tmgcxb.2017.s2.022
|
[28] |
杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53 − 62, 69. doi: 10.15951/j.tmgcxb.2017.01.007
DU Xiuli, MA Chao, LU Dechun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads [J]. China Civil Engineering Journal, 2017, 50(1): 53 − 62, 69. (in Chinese) doi: 10.15951/j.tmgcxb.2017.01.007
|