ZHANG Yan, CHEN Guo-xing, ZHAO Kai, PENG Yan-ju, JIANG Zhi-jie, YANG Wen-bao. UNCERTAINTIES OF SHEAR MODULUS REDUCTION AND DAMPING RATION CURVES OF MARINE SOILS[J]. Engineering Mechanics, 2023, 40(5): 161-171. DOI: 10.6052/j.issn.1000-4750.2021.10.0832
Citation: ZHANG Yan, CHEN Guo-xing, ZHAO Kai, PENG Yan-ju, JIANG Zhi-jie, YANG Wen-bao. UNCERTAINTIES OF SHEAR MODULUS REDUCTION AND DAMPING RATION CURVES OF MARINE SOILS[J]. Engineering Mechanics, 2023, 40(5): 161-171. DOI: 10.6052/j.issn.1000-4750.2021.10.0832

UNCERTAINTIES OF SHEAR MODULUS REDUCTION AND DAMPING RATION CURVES OF MARINE SOILS

More Information
  • Received Date: October 27, 2021
  • Revised Date: March 08, 2022
  • Accepted Date: May 11, 2022
  • Available Online: May 11, 2022
  • The uncertainties of soil shear modulus reduction (G/Gmax) and damping (λ) increase curves with shear strain amplitude (γa) have important influence on the uncertainty of the results of nonlinear site seismic response. Based on the test data of undisturbed marine silty clay samples taken from seabed surface to 110 m depth at the Laizhou Bay, the G/Gmax curve is described using the Davidenkov skeleton curve function, and the λ curve is expressed as a function of two variables, i.e., the λmin (small strain damping) and G/Gmax. The laboratory investigation reveals that the prediction equations of parameters A, B, and γr, which describe the G/Gmax curve and λmin, are all functions of the seabed depth H. The uncertainty transfer analysis based on point estimation method shows that the total uncertainty of the predicted G/Gmax caused by the parameters A, B, and γr and the single univariate uncertainty of the predicted G/Gmax caused by one of the three parameters increase first and then decrease with γa. The total and univariate uncertainty of the predicted G/Gmax caused by the variable B or γr decrease with H, whereas the univariate uncertainty of the predicted G/Gmax caused by the variable A increases with H. The total uncertainty of the predicted λ caused by G/Gmax and λmin and the univariate uncertainty of the predicted λ caused by G/Gmax increase slightly first and then decrease slightly with γa, while both decrease slightly with H. The univariate uncertainty of the predicted λ caused by λmin is independent of γa and increases slightly with H.
  • [1]
    朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础 AP1000 核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129 − 142. doi: 10.6052/j.issn.1000-4750.2020.02.0121

    ZHU Shengdong, CHEN Guoxing, JIANG Pengcheng, et al. 3d nonlinear response characteristics of the pile-raft supported ap1000 nuclear island building in soft deposits subjected to strong ground motions [J]. Engineering Mechanics, 2021, 38(1): 129 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0121
    [2]
    陈国兴, 刘雪珠, 王炳辉. 土动力参数变异性对深软场地地表地震动参数的影响[J]. 防灾减灾工程学报, 2007, 27(1): 1 − 10. doi: 10.3969/j.issn.1672-2132.2007.01.001

    CHEN Guoxing, LIU Xuezhu, WANG Binghui. Effect of variability of soil dynamic parameters on ground motion parameters for deep soft sites [J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(1): 1 − 10. (in Chinese) doi: 10.3969/j.issn.1672-2132.2007.01.001
    [3]
    孙锐, 袁晓铭, 刘晓键. 动剪切模量比与剪切波速对地震动影响及等量关系研究[J]. 岩土工程学报, 2009, 31(8): 1267 − 1274. doi: 10.3321/j.issn:1000-4548.2009.08.018

    SUN Rui, YUAN Xiaoming, LIU Xiaojian. Effects of dynamic shear modulus ratio and velocity on surface ground motion and their equivalent relations [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1267 − 1274. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.08.018
    [4]
    HU Q, LI H, YANG G, et al. Effects of uncertainty of dynamic shear modulus ratio on design ground motion [J]. Soil Mechanics and Foundation Engineering, 2019, 56(2): 82 − 90. doi: 10.1007/s11204-019-09574-x
    [5]
    孙锐, 陈红娟, 袁晓铭. 土的非线性动剪切模量比和阻尼比不确定性分析[J]. 岩土工程学报, 2010, 32(8): 1228 − 1235.

    SUN Rui, CHEN Hongjuan, YUAN Xiaoming. Uncertainty of non-linear dynamic shear modular ratio and damping ratio of soils [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1228 − 1235. (in Chinese)
    [6]
    陈国兴, 刘雪珠, 朱定华, 等. 南京新近沉积土动剪切模量比和阻尼比的试验研究[J]. 岩土工程学报, 2006, 28(8): 1023 − 1027. doi: 10.3321/j.issn:1000-4548.2006.08.018

    CHEN Guoxing, LIU Xuezhu, ZHU Dinghua, et al. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023 − 1027. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.08.018
    [7]
    CHEN G X, ZHOU Z L, SUN T, et al. Shear modulus and damping ratio of sand-gravel mixtures over a wide strain range [J]. Journal of Earthquake Engineering, 2019, 23(8): 1407 − 1440. doi: 10.1080/13632469.2017.1387200
    [8]
    KISHIDA T, BOULANGER R W, ABRAHAMSON N A, et al. Regression models for dynamic properties of highly organic soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 533 − 543. doi: 10.1061/(ASCE)1090-0241(2009)135:4(533)
    [9]
    PARK D S, KISHIDA T. Shear modulus reduction and damping ratio curves for earth core materials of dams [J]. Canadian Geotechnical Journal, 2019, 56(1): 14 − 22. doi: 10.1139/cgj-2017-0529
    [10]
    KISHIDA T. Comparison and correction of modulus reduction models for clays and silts [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(4): 04016110. doi: 10.1061/(ASCE)GT.1943-5606.0001627
    [11]
    ZHANG J F, ANDRUS R D, JUANG C H. Normalized shear modulus and material damping ration relationships [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 453 − 464. doi: 10.1061/(ASCE)1090-0241(2005)131:4(453)
    [12]
    杨文保, 吴琪, 陈国兴. 长江入海口原状土动剪切模量预测方法探究[J]. 岩土力学, 2019, 40(10): 3889 − 3896.

    YANG Wenbao, WU Qi, CHEN Guoxing. Study on dynamic shear modulus prediction method of undisturbed soil in the estuary of the Yangtze River [J]. Rock and Soil Mechanics, 2019, 40(10): 3889 − 3896. (in Chinese)
    [13]
    陈国兴, 杨文保, 岳文泽, 等. 金塘海峡海洋土动剪切模量与阻尼比特性研究[J]. 防灾减灾工程学报, 2020, 40(1): 1 − 8.

    CHEN Guoxing, YANG Wenbao, YUE Wenze, et al. Experimental studies on the dynamic shear modulus and damping ratio characteristics of marine soils in the Jintang Strait [J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(1): 1 − 8. (in Chinese)
    [14]
    尹松, 张先伟, 孔令伟, 等. 海洋沉积土动剪切模量与阻尼比的试验研究[J]. 岩土力学, 2015, 36(增刊 1): 459 − 464.

    YIN Song, ZHANG Xianwei, KONG Lingwei, et al. Testing study of dynamic shear modulus and damping ration of seabed sediment [J]. Rock and Soil Mechanics, 2015, 36(Suppl 1): 459 − 464. (in Chinese)
    [15]
    KAGAWA T. Moduli and damping factors of soft marine clays [J]. Journal of Geotechnical Engineering, ASCE, 1992, 118(9): 1360 − 1375. doi: 10.1061/(ASCE)0733-9410(1992)118:9(1360)
    [16]
    陈国兴, 谢君斐, 张克绪. 土的动模量和阻尼比的经验估计[J]. 地震工程与工程振动, 1995, 15(1): 73 − 84.

    CHEN Guoxing, XIE Junfei, ZHANG Kexu. The empirical evaluation of soil moduli and damping ratio for dynamic analysis [J]. Earthquake Engineering and Engineering Vibration, 1995, 15(1): 73 − 84. (in Chinese)
    [17]
    JUANG C H, GONG W P, MARTIN J R, et al. Model selection in geological and geotechnical engineering in the face of uncertainty-Does a complex model always outperform a simple model [J]. Engineering Geology, 2018, 242: 184 − 196. doi: 10.1016/j.enggeo.2018.05.022
    [18]
    ROSENBLUETH E. Point estimates for probability moments [C]. USA: PNAS, 1975.
    [19]
    张仪萍, 李 涛, 王 伟. 竖井地基固结概率分析的点估计法[J]. 岩土工程学报, 2007, 29(9): 1367 − 1371. doi: 10.3321/j.issn:1000-4548.2007.09.014

    ZHANG Yiping, LI Tao, WANG Wei. Probability analysis of consolidation of ground with vertical drain using point-estimate method [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1367 − 1371. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.09.014
    [20]
    舒苏荀, 龚文惠. 边坡稳定分析的神经网络改进模糊点估计法[J]. 岩土力学, 2015, 36(7): 2111 − 2116.

    SHU Suxun, GONG Wenhui. An improved fuzzy point estimate method for slope stability analysis based on neural network [J]. Rock and Soil Mechanics, 2015, 36(7): 2111 − 2116. (in Chinese)
    [21]
    陈国兴, 卜屹凡, 周正龙, 等. 沉积相和深度对第四纪土动剪切模量和阻尼比的影响[J]. 岩土工程学报, 2017, 39(7): 1344 − 1350. doi: 10.11779/CJGE201707022

    CHEN Guoxing, BU Yifan, ZHOU Zhenglong, et al. Influence of sedimentary facies and depth on normalized dynamic shear modulus and damping ratio of quaternary soils [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1344 − 1350. (in Chinese) doi: 10.11779/CJGE201707022
    [22]
    陈国兴, 夏高旭, 王彦臻, 等. 琼州海峡海床地震反应特性的一维非线性分析[J]. 工程力学, 2022, 39(5): 75 − 85. doi: 10.6052/j.issn.1000-4750.2021.03.0167

    CHEN Guoxing, XIA Gaoxu, WANG Yanzhen, et al. One-dimensional nonlinear seismic response analysis for seabed site effect assessment in the qiongzhou strait [J]. Engineering Mechanics, 2022, 39(5): 75 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0167
    [23]
    STOKOE II K H, HWANG S K, DARENDELI M B, et al. Correlation study of nonlinear dynamic soils properties [R]. USA:Aiken, S C, 1995.
    [24]
    CHEN G X, WANG Y Z, ZHAO D F, et al. A new effective stress method for nonlinear site response analyses [J]. Earthquake Engineering & Structural Dynamics, 2021, 50: 1595 − 1611.
    [25]
    CHEN G X, ZHOU Z L, PAN H, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range [J]. Engineering Geology, 2016, 204: 77 − 93. doi: 10.1016/j.enggeo.2016.02.008
    [26]
    HARR M E. Probability-based design in civil engineering [M]. New York: McGraw-Hill Book Company, 1987.
    [27]
    ROSENBLUETH E. Two-point estimates in probabilities [J]. Applied Mathematical Modelling, 1981, 5(2): 329 − 335.
    [28]
    孙毅龙, 许成顺, 杜修力, 等. 海上风电大直径单桩的修正 p-y 曲线模型[J]. 工程力学, 2021, 38(4): 44 − 53. doi: 10.6052/j.issn.1000-4750.2020.01.0051

    SUN Yilong, XU Chengshun, DU Xiuli, et al. A modified p-y curve model of large-monopiles of offshore wind power plants [J]. Engineering Mechanics, 2021, 38(4): 44 − 53. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0051
    [29]
    ZHANG Y H, ANDERSEN K. Scaling of lateral pile p-y response in clay from laboratory stress-strain curves [J]. Marine Structures, 2017, 53: 124 − 135. doi: 10.1016/j.marstruc.2017.02.002
    [30]
    LAI Y Q, WANG L Z, ZHANG Y H, et al. Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress-strain curves [J]. Ocean Engineering, 2021, 15: 108437.
    [31]
    ZHAO K, WANG Q Z, CHEN W Y, et al. Uplift of immersed tunnel in liquefiable seabed under wave and current propagation [J]. Engineering Geology, 2020, 278: 105828. doi: 10.1016/j.enggeo.2020.105828
    [32]
    CHEN G X, RUAN B, ZHAO K, et al. Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motions [J]. Journal of Earthquake Engineering, 2020, 24(3): 351 − 380. doi: 10.1080/13632469.2018.1453416
    [33]
    RUAN B, ZHAO K, WANG S Y, et al. Numerical modeling of seismic site effects in a shallow estuarine bay [J]. Engineering Geology, 2019, 260: 105233. doi: 10.1016/j.enggeo.2019.105233
  • Related Articles

    [1]LIU Yi-heng, HU Jin-jun, LIU Ba-li. UNCERTAINTY EVALUATION AND OPTIMIZATION METHOD OF GROUND MOTION FOR SEISMIC FRAGILITY ANALYSIS OF RC FRAME STRUCTURES[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.09.0693
    [2]ZHENG Yan-feng, LI Si-yuan, YANG Chao, LUO Yao-zhi. DYNAMICS ANALYSIS OF BENNETT LINKAGE WITH PARAMETER UNCERTAINTIES USING CHEBYSHEV POLYNOMIALS METHOD AND FINITE PARTICLE METHOD[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.08.0634
    [3]FAN Wen-liang, YUAN Man, LIU Run-yu, YANG Xiao-yang, LI Zheng-liang. POINT ESTIMATION FOR STATISTICAL MOMENTS BASED ON THE BIVARIATE DIMENSION-REDUCTION MODEL AND KRIGING APPROXIMATION[J]. Engineering Mechanics, 2020, 37(12): 171-179. DOI: 10.6052/j.issn.1000-4750.2020.02.0096
    [4]FAN Wen-liang, HAN Yang, ZHOU Qing-yu, LI Zheng-liang. POINT ESIMATE FOR STATISTICAL MOMENTS OF SYSTEMS WITH INCOMPLETE PROBABILITY INFORMATION[J]. Engineering Mechanics, 2017, 34(2): 34-41. DOI: 10.6052/j.issn.1000-4750.2015.07.0592
    [5]WENG Meng-xiu, LEI Ying. PROBABILITY ANALYSIS OF STRUCTURE DAMAGE IDENTIFICATION INCLUDING SYSTEM UNCERTAINTY[J]. Engineering Mechanics, 2016, 33(增刊): 29-32. DOI: 10.6052/j.issn.1000-4750.2015.05.S004
    [6]JIANG Dong, WU Shao-qing, SHI Qin-feng, FEI Qing-guo. CONTACT INTERFACE PARAMETER IDENTIFICATION OF BOLTED JOINT STRUCTURE WITH UNCERTAINTY USING THIN LAYER ELEMENT METHOD[J]. Engineering Mechanics, 2015, 32(4): 220-227. DOI: 10.6052/j.issn.1000-4750.2013.10.0920
    [7]SHI Xing-hua, HANG Cen, JI Chun-yan, SHI Xiao-yan. UNCERTAINTY IN ANALYZING ULTIMATE STRENGTH OF SHIP STIFFENING PLATES WITH INITIAL INPERFECTIONS USING NONLINEAR FINITE ELEMENT METHODS[J]. Engineering Mechanics, 2015, 32(2): 221-226. DOI: 10.6052/j.issn.1000-4750.2013.08.0747
    [8]FAN Wen-liang, YANG Peng-chao, LI Zheng-liang. POINT ESTIMATE FOR THE FUNCTION WITH DISCRETE RANDOM VARIABLES[J]. Engineering Mechanics, 2014, 31(10): 8-13. DOI: 10.6052/j.issn.1000-4750.2013.04.0379
    [9]FAN Wen-liang, LI Zheng-liang, WANG Cheng-qi. COMPARISON OF POINT ESTIMATE METHODS FOR PROBABILITY MOMENTS OF MULTIVARIATE FUNCTION[J]. Engineering Mechanics, 2012, 29(11): 1-011. DOI: 10.6052/j.issn.1000-4750.2010.09.0698
    [10]FAN Wen-liang, LI Zheng-liang, HAN Feng. COMPARISON OF POINT ESTIMATE METHODS FOR PROBABILITY MOMENTS OF UNIVARIATE FUNCTION[J]. Engineering Mechanics, 2012, 29(9): 1-10,16. DOI: 10.6052/j.issn.1000-4750.2010.09.0697
  • Cited by

    Periodical cited type(7)

    1. 王秋哲, 荀郑, 白笑笑, 赵凯, 陈国兴. 竖向和水平向地震动耦合作用下海底沉管隧道失稳机理. 防灾减灾工程学报. 2025(03)
    2. 江志伟,杨秀仁,李霞. 强震区装配式和现浇地铁车站结构地震响应对比研究. 工程力学. 2025(01): 164-173 . 本站查看
    3. 陈蕾,冀卫东,陶小三,李荣富,王海波,朱海伦. 南黄海大丰海域海洋土动剪切模量和阻尼特征研究. 林业工程学报. 2025(02): 156-164 .
    4. 王秋哲,韩瑞,白笑笑,蒋家卫,赵凯,陈国兴. 强震作用下可液化海床沉管隧道上浮机理研究. 工程力学. 2025(04): 121-129 . 本站查看
    5. 刘鑫,郑广鑫. 南水北调暗挖工程复杂地层加固技术探析. 东北水利水电. 2024(10): 8-10+65+71 .
    6. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    7. 王小桃,程旭日,冯雨顺,黎章,童晨曦,张升. 福州长乐国际机场场地动力特性及稳定性研究. 岩土工程学报. 2023(S2): 98-103 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (457) PDF downloads (107) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return