Citation: | JIN Liu, YANG Wang-xian, YU Wen-xuan, DU Xiu-li. DYNAMIC COMPRESSIVE FAILURE AND SIZE EFFECT IN LIGHTWEIGHT AGGREGATE CONCRETE BASED ON MESO-SCALE SIMULATION[J]. Engineering Mechanics, 2020, 37(3): 56-65. DOI: 10.6052/j.issn.1000-4750.2019.01.0012 |
[1] |
Cui H Z, Lo T Y, Memon S A, et al. Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete[J]. Construction and Building Materials, 2012, 35(10):149-158.
|
[2] |
Kayali O, Haque M N, Zhu B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete[J]. Cement and Concrete Composites, 2003, 25(2):207-213.
|
[3] |
Agnesini M V C, João A R. Durability of polymer-modified lightweight aggregate concrete[J]. Cement and Concrete Composites, 2004, 26(4):375-380.
|
[4] |
曹擎宇, 孙伟, 郝挺宇, 等. 不同类型混凝土弯曲强度尺寸效应[J]. 北京工业大学学报, 2013, 39(9):1311-1315. Cao Qingyu, Sun Wei, Hao Tingyu, et al. Size effect on flexural strength of various concrete[J]. Journal of Beijing University of Technology, 2013, 39(9):1311-1315. (in Chinese)
|
[5] |
Wu C H, Kan Y C, Huang C H, et al. Flexural behavior and size effect of full scale reinforced lightweight concrete beam[J]. Journal of Marine Science and Technology, 2011, 19(2):132-140.
|
[6] |
Li M, Hao H, Shi Y, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests[J]. Construction and Building Materials, 2018, 161:94-93.
|
[7] |
Elfahal M M, Krauthammer T. Dynamic size effect in normal-and high-strength concrete cylinders[J]. ACI Materials Journal, 2005, 102(2):77-85.
|
[8] |
Wang X, Zhang S, Wang C, et al. Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading[J]. Construction and Building Materials, 2018, 165:45-57.
|
[9] |
Jin L, Yu W X, Du X L, et al. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates[J]. International Journal of Impact Engineering, 2019, 125:1-12.
|
[10] |
Du X L, Jin L, Ma G W. Meso-element equivalent method for the simulation of macro mechanical properties of concrete[J]. International Journal of Damage Mechanics, 2013, 22(5):617-642.
|
[11] |
Du X, Jin L, Ma G. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members[J]. International Journal of Damage Mechanics, 2013, 22(6):878-904.
|
[12] |
Sadouki H, Wittmann F H. On the analysis of the failure process in composite materials by numerical simulation[J]. Materials Science and Engineering A, 1988, 104(6):9-20.
|
[13] |
Cusatis G, Mencarelli A, Pelessone D, et al. Lattice discrete particle model (LDPM) for failure behavior of concrete. II:Calibration and validation[J]. Cement and Concrete Composites, 2011, 33(9):891-905.
|
[14] |
Grassl P, Grégoire D, Solano L R, et al. Meso-scale modelling of the size effect on the fracture process zone of concrete[J]. International Journal of Solids and Structures, 2012, 49(13):1818-1827.
|
[15] |
Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids & Structures, 2008, 45(17):4648-4661.
|
[16] |
Jin L, Xu C, Han Y, et al. Effect of end friction on the dynamic compressive mechanical behavior of concrete under medium and low strain rates[J]. Shock and Vibration, 2016, 2016:1-20.
|
[17] |
Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
|
[18] |
金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响的细观数值分析[J]. 工程力学, 2015, 32(8):42-49. Jin Liu, Du Xiuli. Meso-scale numerical analysis of the effect of loading rate on the tensile failure behavior of concrete[J]. Engineering Mechanics, 2015, 32(8):42-49. (in Chinese)
|
[19] |
Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
|
[20] |
王立成, 陈桂斌. 基于细观刚体弹簧元的轻骨料混凝土力学性能数值模拟[J]. 水利学报, 2008, 39(5):80-87. Wang Licheng, Chen Guibin. Mesoscopic simulation for mechanical properties of lightweight aggregate concrete by rigid body spring model[J]. Journal of Hydraulic Engineering, 2008, 39(5):80-87. (in Chinese)
|
[21] |
Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. Journal Proceedings, 1984, 81(1):73-81.
|
[22] |
Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450.
|
[23] |
Hao Y, Hao H, Li Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60:82-106.
|
[24] |
Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17):4648-4661.
|
[25] |
Cusatis G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4):162-170.
|
[26] |
Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1991.
|
[27] |
Bažant Z P, Caner F C, Adley M D, et al. Fracturing rate effect and creep in micro-plane model for dynamics[J]. ASCE Journal of Engineering Mechanics, 2000, 126(9):962-970.
|
[28] |
王振宇, 丁建彤, 郭玉顺. 结构轻骨料混凝土的应力-应变全曲线[J]. 混凝土, 2005(3):39-41. Wang Zhenyu, Ding Jiantong, Guo Yushun. Stress-strain curves of structural lightweight aggregate concretes[J]. Concrete, 2005(3):39-41. (in Chinese)
|
[29] |
黄锦波. 轻骨料混凝土和粉煤灰混凝土强度尺寸效应研究[D]. 北京:北京建筑工程学院, 2007. Huang Jinbo. Study on strength size effect of lightweight aggregate concrete and fly ash concrete[D]. Beijing:Beijing Institute of Civil Engineering and Architecture, 2007. (in Chinese)
|
[30] |
刘传雄, 李玉龙, 吴子燕, 等. 混凝土材料的动态压缩破坏机理及本构关系[J]. 振动与冲击, 2011, 30(5):1-5. Liu Chuanxiong, Li Yulong, Wu Ziyan, et al. Failure mechanism and constitutive model of a concrete material under dynamic compressive loads[J]. Journal of Vibration and Shock, 2011, 30(5):1-5. (in Chinese)
|
[31] |
Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. Materials Journal, 1998, 95(6):735-739.
|
[32] |
Bažant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. Routledge:CRC Press, 1998:7-15.
|
[33] |
Weibull W. The phenomenon of rupture in solids[J]. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153:1-55.
|
1. |
陈凤娟,高成琛,金浏,杜修力. 快中子诱发蛇纹石混凝土力学性能退化研究. 工程力学. 2025(01): 32-43 .
![]() | |
2. |
纪泳丞,王大洋,贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究. 材料导报. 2025(03): 141-151 .
![]() | |
3. |
马俊,谢全民,万鹏,孙热,章逸锋,彭磊. 早龄期喷射混凝土冲击动力学响应及损伤演化试验研究. 振动与冲击. 2025(04): 176-183+206 .
![]() | |
4. |
章毅,张湘茹,吴昊,胡枫. 混凝土3D细观模型及准静态力学行为分析. 工程力学. 2024(08): 80-92 .
![]() | |
5. |
徐磊,吴雨凌,甘磊,姜磊. 混凝土细观损伤演化与宏观均匀化表征. 华中科技大学学报(自然科学版). 2024(10): 13-19 .
![]() | |
6. |
管俊峰,马越,何双华,姚贤华,李列列,陈珊珊,贾胜. 设计定量几何结构试件预测混凝土结构断裂特性. 工程力学. 2024(10): 49-63 .
![]() | |
7. |
李冠鹏,陈占扬,李洪博,武海荣,黄鹏,刘子墨,杜文韬. 基于三维细观的混凝土靶板侵彻仿真研究. 河南城建学院学报. 2024(06): 48-55 .
![]() | |
8. |
张登祥,李金朋,刘智光. 基于细观层次的轻骨料混凝土压缩破坏及端面效应数值模拟. 长江科学院院报. 2023(01): 176-183 .
![]() | |
9. |
王公志,王江,许斌. 轻粗骨料含量对混凝土抗压性能尺寸效应影响的细观数值模拟. 力学季刊. 2023(02): 456-468 .
![]() | |
10. |
郑治祥,沈奇罕,胡子明,孟宪乔,徐智东. 大型输电塔中钢管混凝土构件研究进展. 安徽建筑. 2023(09): 76-78 .
![]() | |
11. |
马俊军,蔺鹏臻. 氯离子在混凝土中扩散效应分析的MCA模型. 铁道学报. 2023(08): 156-165 .
![]() | |
12. |
李健,金浏,余文轩,杜修力. 混凝土动态双轴压缩强度准则细观研究. 工程力学. 2023(11): 59-68 .
![]() | |
13. |
朱润田,李源,韩逸涛,蔺渠通. 爆炸荷载下高性能混凝土防护钢筋混凝土矩形墩动态力学响应研究. 桥梁建设. 2023(06): 111-118 .
![]() | |
14. |
魏丽丽,胡明玉. 砂浆碱集料反应细观数值模拟. 吉林大学学报(工学版). 2023(12): 3501-3507 .
![]() | |
15. |
张力,王猛,陈强,李彦斌,皮慧龙,董萼良. 考虑微观界面的2D编织SiC/SiC复合材料宏-细-微多尺度渐进损伤失效分析. 工程力学. 2022(03): 233-248 .
![]() | |
16. |
徐磊,崔姗姗,姜磊,任青文. 基于双重网格的混凝土自适应宏细观协同有限元分析方法. 工程力学. 2022(04): 197-208 .
![]() | |
17. |
江舒棋,赵红华,张超,张大帅,王小红. 钠基、钙基蒙脱石低含水率状态下基质势能的多元动力学研究. 工程力学. 2022(04): 230-237 .
![]() | |
18. |
冯德銮,梁仕华. 一个基于细观物理机制的土石混合料抗剪强度理论模型. 工程力学. 2022(06): 134-145 .
![]() | |
19. |
李京军,闫珺,牛建刚. 冻融作用对自密实轻骨料混凝土声发射特性影响. 工程力学. 2022(09): 133-140+169 .
![]() | |
20. |
张佩,刘泽昊,齐吉琳,杜修力. 卵石倾角对砂卵石地层隧道开挖影响的细观力学研究. 工程力学. 2022(10): 48-60 .
![]() | |
21. |
徐磊,姜磊,王绍洲,任青文. 混凝土跨尺度损伤开裂自适应宏细观递进分析方法. 东南大学学报(自然科学版). 2022(06): 1052-1062 .
![]() | |
22. |
任恒谊. 引水工程衬砌结构中特种混凝土材料单轴压缩应力特性分析. 水利技术监督. 2021(02): 96-100 .
![]() | |
23. |
孟龙,黄瑞源,蒋东,肖凯涛,李平. 不同强度混凝土高温下动态劈拉性能研究. 工程力学. 2021(03): 202-213 .
![]() | |
24. |
朱然. 轻骨料混凝土尺寸效应研究现状综述. 粉煤灰综合利用. 2021(01): 40-46 .
![]() | |
25. |
高矗,孔祥振,申向东. 基于GM(1, 1)的应力损伤轻骨料混凝土抗冻性评估. 工程科学与技术. 2021(04): 184-190 .
![]() | |
26. |
周宏元,王业斌,王小娟,石南南. 泡沫混凝土压缩性能尺寸效应研究. 材料导报. 2021(18): 18076-18082+18095 .
![]() |