JIN Liu, YANG Wang-xian, YU Wen-xuan, DU Xiu-li. DYNAMIC COMPRESSIVE FAILURE AND SIZE EFFECT IN LIGHTWEIGHT AGGREGATE CONCRETE BASED ON MESO-SCALE SIMULATION[J]. Engineering Mechanics, 2020, 37(3): 56-65. DOI: 10.6052/j.issn.1000-4750.2019.01.0012
Citation: JIN Liu, YANG Wang-xian, YU Wen-xuan, DU Xiu-li. DYNAMIC COMPRESSIVE FAILURE AND SIZE EFFECT IN LIGHTWEIGHT AGGREGATE CONCRETE BASED ON MESO-SCALE SIMULATION[J]. Engineering Mechanics, 2020, 37(3): 56-65. DOI: 10.6052/j.issn.1000-4750.2019.01.0012

DYNAMIC COMPRESSIVE FAILURE AND SIZE EFFECT IN LIGHTWEIGHT AGGREGATE CONCRETE BASED ON MESO-SCALE SIMULATION

More Information
  • Received Date: January 11, 2019
  • Revised Date: April 03, 2019
  • Lightweight aggregate concrete (LWAC) is utilized more and more in practical engineering structures because of the light weight and good thermal insulation performance. In this study, LWAC was regarded a three-phase composite consisting of aggregate particles, a mortar matrix and the interface transition zone. A meso-scale simulation method for modelling the dynamic failure of concrete was established. The plastic damage constitutive model coupling with the effect of strain rate was adopted to describe the mechanical properties of concrete meso-components. The compressive failure behavior and size effect of LWAC under dynamic compressive loading were studied. The simulation results indicated that with the increase in strain rate, the inertia effect became dominant, and the size effect on dynamic compressive strength was gradually weakened and suppressed. At the critical strain rate, the size effect would be completely suppressed. In addition, according to the influence mechanism of strain rate effect, the mechanism of size effect on the dynamic compressive strength of LWAC was studied. A semi-empirical and semi-theoretical "static-dynamic unified size effect law" for quantitatively describing the size effect of LWAC was subsequently established.
  • [1]
    Cui H Z, Lo T Y, Memon S A, et al. Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete[J]. Construction and Building Materials, 2012, 35(10):149-158.
    [2]
    Kayali O, Haque M N, Zhu B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete[J]. Cement and Concrete Composites, 2003, 25(2):207-213.
    [3]
    Agnesini M V C, João A R. Durability of polymer-modified lightweight aggregate concrete[J]. Cement and Concrete Composites, 2004, 26(4):375-380.
    [4]
    曹擎宇, 孙伟, 郝挺宇, 等. 不同类型混凝土弯曲强度尺寸效应[J]. 北京工业大学学报, 2013, 39(9):1311-1315. Cao Qingyu, Sun Wei, Hao Tingyu, et al. Size effect on flexural strength of various concrete[J]. Journal of Beijing University of Technology, 2013, 39(9):1311-1315. (in Chinese)
    [5]
    Wu C H, Kan Y C, Huang C H, et al. Flexural behavior and size effect of full scale reinforced lightweight concrete beam[J]. Journal of Marine Science and Technology, 2011, 19(2):132-140.
    [6]
    Li M, Hao H, Shi Y, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests[J]. Construction and Building Materials, 2018, 161:94-93.
    [7]
    Elfahal M M, Krauthammer T. Dynamic size effect in normal-and high-strength concrete cylinders[J]. ACI Materials Journal, 2005, 102(2):77-85.
    [8]
    Wang X, Zhang S, Wang C, et al. Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading[J]. Construction and Building Materials, 2018, 165:45-57.
    [9]
    Jin L, Yu W X, Du X L, et al. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates[J]. International Journal of Impact Engineering, 2019, 125:1-12.
    [10]
    Du X L, Jin L, Ma G W. Meso-element equivalent method for the simulation of macro mechanical properties of concrete[J]. International Journal of Damage Mechanics, 2013, 22(5):617-642.
    [11]
    Du X, Jin L, Ma G. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members[J]. International Journal of Damage Mechanics, 2013, 22(6):878-904.
    [12]
    Sadouki H, Wittmann F H. On the analysis of the failure process in composite materials by numerical simulation[J]. Materials Science and Engineering A, 1988, 104(6):9-20.
    [13]
    Cusatis G, Mencarelli A, Pelessone D, et al. Lattice discrete particle model (LDPM) for failure behavior of concrete. II:Calibration and validation[J]. Cement and Concrete Composites, 2011, 33(9):891-905.
    [14]
    Grassl P, Grégoire D, Solano L R, et al. Meso-scale modelling of the size effect on the fracture process zone of concrete[J]. International Journal of Solids and Structures, 2012, 49(13):1818-1827.
    [15]
    Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids & Structures, 2008, 45(17):4648-4661.
    [16]
    Jin L, Xu C, Han Y, et al. Effect of end friction on the dynamic compressive mechanical behavior of concrete under medium and low strain rates[J]. Shock and Vibration, 2016, 2016:1-20.
    [17]
    Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
    [18]
    金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响的细观数值分析[J]. 工程力学, 2015, 32(8):42-49. Jin Liu, Du Xiuli. Meso-scale numerical analysis of the effect of loading rate on the tensile failure behavior of concrete[J]. Engineering Mechanics, 2015, 32(8):42-49. (in Chinese)
    [19]
    Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
    [20]
    王立成, 陈桂斌. 基于细观刚体弹簧元的轻骨料混凝土力学性能数值模拟[J]. 水利学报, 2008, 39(5):80-87. Wang Licheng, Chen Guibin. Mesoscopic simulation for mechanical properties of lightweight aggregate concrete by rigid body spring model[J]. Journal of Hydraulic Engineering, 2008, 39(5):80-87. (in Chinese)
    [21]
    Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. Journal Proceedings, 1984, 81(1):73-81.
    [22]
    Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450.
    [23]
    Hao Y, Hao H, Li Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60:82-106.
    [24]
    Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17):4648-4661.
    [25]
    Cusatis G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4):162-170.
    [26]
    Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1991.
    [27]
    Bažant Z P, Caner F C, Adley M D, et al. Fracturing rate effect and creep in micro-plane model for dynamics[J]. ASCE Journal of Engineering Mechanics, 2000, 126(9):962-970.
    [28]
    王振宇, 丁建彤, 郭玉顺. 结构轻骨料混凝土的应力-应变全曲线[J]. 混凝土, 2005(3):39-41. Wang Zhenyu, Ding Jiantong, Guo Yushun. Stress-strain curves of structural lightweight aggregate concretes[J]. Concrete, 2005(3):39-41. (in Chinese)
    [29]
    黄锦波. 轻骨料混凝土和粉煤灰混凝土强度尺寸效应研究[D]. 北京:北京建筑工程学院, 2007. Huang Jinbo. Study on strength size effect of lightweight aggregate concrete and fly ash concrete[D]. Beijing:Beijing Institute of Civil Engineering and Architecture, 2007. (in Chinese)
    [30]
    刘传雄, 李玉龙, 吴子燕, 等. 混凝土材料的动态压缩破坏机理及本构关系[J]. 振动与冲击, 2011, 30(5):1-5. Liu Chuanxiong, Li Yulong, Wu Ziyan, et al. Failure mechanism and constitutive model of a concrete material under dynamic compressive loads[J]. Journal of Vibration and Shock, 2011, 30(5):1-5. (in Chinese)
    [31]
    Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. Materials Journal, 1998, 95(6):735-739.
    [32]
    Bažant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. Routledge:CRC Press, 1998:7-15.
    [33]
    Weibull W. The phenomenon of rupture in solids[J]. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153:1-55.
  • Related Articles

    [1]JIN Liu, MIAO Li-yue, LI Dong, DU Xiu-li. INFLUENCE OF AXIAL COMPRESSION RATIO ON SIZE EFFECT OF RC SHEAR WALL UNDER SHEAR FAILURE: MESO-SCALE SIMULATION[J]. Engineering Mechanics, 2021, 38(9): 26-35. DOI: 10.6052/j.issn.1000-4750.2020.08.0581
    [2]JIN Liu, LI Xiu-rong, DU Xiu-li. MESO-SCALE ANALYSIS OF SIZE EFFECT ON ASEISMIC BEHAVIOR OF REINFORCED CONCRETE SQUARE COLUMNS STRENGTHENED WITH CFRP[J]. Engineering Mechanics, 2021, 38(7): 41-51. DOI: 10.6052/j.issn.1000-4750.2020.07.0435
    [3]JIN Liu, JIANG Xuan-ang, DU Xiu-li. SHEAR FAILURE AND SIZE EFFECT OF LIGHTWEIGHT AGGREGATE CONCRETE BEAMS WITHOUT WEB REINFORCEMENT: A MESO-SCALE STUDY[J]. Engineering Mechanics, 2020, 37(7): 57-67. DOI: 10.6052/j.issn.1000-4750.2019.05.0253
    [4]JIN Liu, YU Wen-xuan, DU Xiu-li, ZHANG Shuai, YANG Wang-xian, LI Dong. RESERCH ON SIZE EFFECT OF DYNAMIC COMPRESSIVE STRENGTH OF CONCRETE BASED ON MESO-SCALE SIMULATION[J]. Engineering Mechanics, 2019, 36(11): 50-61. DOI: 10.6052/j.issn.1000-4750.2018.06.0363
    [5]JIN Liu, YU Wen-xuan, DU Xiu-li, ZHANG Shuai, LI Dong. MESO-SCALE SIMULATION OF SIZE EFFECT OF DYNAMIC TENSILE STRENGTH OF CONCRETE UNDER LOW STRAIN RATES[J]. Engineering Mechanics, 2019, 36(8): 59-69,78. DOI: 10.6052/j.issn.1000-4750.2018.03.0144
    [6]JIN Liu, HAO Hui-min, ZHANG Ren-bo, DU Xiu-li. MESO-SCALE SIMULATIONS OF DYNAMIC COMPRESSIVE BEHAVIOR OF CONCRETE AT ELEVATED TEMPERATURE[J]. Engineering Mechanics, 2019, 36(6): 70-78,118. DOI: 10.6052/j.issn.1000-4750.2018.01.0041
    [7]ZHANG Shuai, JIN Liu, LI Dong, DU Xiu-li. EFFECT OF STRUCTURAL SIZE ON SEISMIC PERFORMANCE OF REINFORCED CONCRETE SHORT COLUMNS—A MESO-SCALE STUDY[J]. Engineering Mechanics, 2018, 35(12): 164-174. DOI: 10.6052/j.issn.1000-4750.2017.10.0765
    [8]JIN Liu, SU Xiao, DU Xiu-li. MESO-SCALE SIMULATIONS ON FLEXURAL FAILURE AND SIZE EFFECT OF REINFORCED CONCRETE BEAMS[J]. Engineering Mechanics, 2018, 35(10): 27-36. DOI: 10.6052/j.issn.1000-4750.2017.06.0436
    [9]DU Min, JIN Liu, LI Dong, DU Xiu-li. MESOSCOPIC SIMULATION STUDY OF THE INFLUENCE OF AGGREGATE SIZE ON MECHANICAL PROPERTIES AND SPECIMEN SIZE EFFECT OF CONCRETE SUBJECTED TO SPLITTING TENSILE LOADING[J]. Engineering Mechanics, 2017, 34(9): 54-63. DOI: 10.6052/j.issn.1000-4750.2016.02.0122
    [10]XU Bin, CHEN Jun-ming, XU Ning. TEST ON STRAIN RATE EFFECTS AND ITS SIMULATION WITH DYNAMIC DAMADED PLASTICITY MODEL FOR RC SHEAR WALLS[J]. Engineering Mechanics, 2012, 29(1): 39-45,6.
  • Cited by

    Periodical cited type(26)

    1. 陈凤娟,高成琛,金浏,杜修力. 快中子诱发蛇纹石混凝土力学性能退化研究. 工程力学. 2025(01): 32-43 . 本站查看
    2. 纪泳丞,王大洋,贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究. 材料导报. 2025(03): 141-151 .
    3. 马俊,谢全民,万鹏,孙热,章逸锋,彭磊. 早龄期喷射混凝土冲击动力学响应及损伤演化试验研究. 振动与冲击. 2025(04): 176-183+206 .
    4. 章毅,张湘茹,吴昊,胡枫. 混凝土3D细观模型及准静态力学行为分析. 工程力学. 2024(08): 80-92 . 本站查看
    5. 徐磊,吴雨凌,甘磊,姜磊. 混凝土细观损伤演化与宏观均匀化表征. 华中科技大学学报(自然科学版). 2024(10): 13-19 .
    6. 管俊峰,马越,何双华,姚贤华,李列列,陈珊珊,贾胜. 设计定量几何结构试件预测混凝土结构断裂特性. 工程力学. 2024(10): 49-63 . 本站查看
    7. 李冠鹏,陈占扬,李洪博,武海荣,黄鹏,刘子墨,杜文韬. 基于三维细观的混凝土靶板侵彻仿真研究. 河南城建学院学报. 2024(06): 48-55 .
    8. 张登祥,李金朋,刘智光. 基于细观层次的轻骨料混凝土压缩破坏及端面效应数值模拟. 长江科学院院报. 2023(01): 176-183 .
    9. 王公志,王江,许斌. 轻粗骨料含量对混凝土抗压性能尺寸效应影响的细观数值模拟. 力学季刊. 2023(02): 456-468 .
    10. 郑治祥,沈奇罕,胡子明,孟宪乔,徐智东. 大型输电塔中钢管混凝土构件研究进展. 安徽建筑. 2023(09): 76-78 .
    11. 马俊军,蔺鹏臻. 氯离子在混凝土中扩散效应分析的MCA模型. 铁道学报. 2023(08): 156-165 .
    12. 李健,金浏,余文轩,杜修力. 混凝土动态双轴压缩强度准则细观研究. 工程力学. 2023(11): 59-68 . 本站查看
    13. 朱润田,李源,韩逸涛,蔺渠通. 爆炸荷载下高性能混凝土防护钢筋混凝土矩形墩动态力学响应研究. 桥梁建设. 2023(06): 111-118 .
    14. 魏丽丽,胡明玉. 砂浆碱集料反应细观数值模拟. 吉林大学学报(工学版). 2023(12): 3501-3507 .
    15. 张力,王猛,陈强,李彦斌,皮慧龙,董萼良. 考虑微观界面的2D编织SiC/SiC复合材料宏-细-微多尺度渐进损伤失效分析. 工程力学. 2022(03): 233-248 . 本站查看
    16. 徐磊,崔姗姗,姜磊,任青文. 基于双重网格的混凝土自适应宏细观协同有限元分析方法. 工程力学. 2022(04): 197-208 . 本站查看
    17. 江舒棋,赵红华,张超,张大帅,王小红. 钠基、钙基蒙脱石低含水率状态下基质势能的多元动力学研究. 工程力学. 2022(04): 230-237 . 本站查看
    18. 冯德銮,梁仕华. 一个基于细观物理机制的土石混合料抗剪强度理论模型. 工程力学. 2022(06): 134-145 . 本站查看
    19. 李京军,闫珺,牛建刚. 冻融作用对自密实轻骨料混凝土声发射特性影响. 工程力学. 2022(09): 133-140+169 . 本站查看
    20. 张佩,刘泽昊,齐吉琳,杜修力. 卵石倾角对砂卵石地层隧道开挖影响的细观力学研究. 工程力学. 2022(10): 48-60 . 本站查看
    21. 徐磊,姜磊,王绍洲,任青文. 混凝土跨尺度损伤开裂自适应宏细观递进分析方法. 东南大学学报(自然科学版). 2022(06): 1052-1062 .
    22. 任恒谊. 引水工程衬砌结构中特种混凝土材料单轴压缩应力特性分析. 水利技术监督. 2021(02): 96-100 .
    23. 孟龙,黄瑞源,蒋东,肖凯涛,李平. 不同强度混凝土高温下动态劈拉性能研究. 工程力学. 2021(03): 202-213 . 本站查看
    24. 朱然. 轻骨料混凝土尺寸效应研究现状综述. 粉煤灰综合利用. 2021(01): 40-46 .
    25. 高矗,孔祥振,申向东. 基于GM(1, 1)的应力损伤轻骨料混凝土抗冻性评估. 工程科学与技术. 2021(04): 184-190 .
    26. 周宏元,王业斌,王小娟,石南南. 泡沫混凝土压缩性能尺寸效应研究. 材料导报. 2021(18): 18076-18082+18095 .

    Other cited types(18)

Catalog

    Article Metrics

    Article views (686) PDF downloads (152) Cited by(44)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return