MENG Long, HUANG Rui-yuan, JIANG Dong, XIAO Kai-tao, LI Ping. RESEARCH ON DYNAMIC SPLITTING-TENSILE PROPERTIES OF CONCRETES WITH DIFFERENT STRENGTH AT HIGH TEMPERATURE[J]. Engineering Mechanics, 2021, 38(3): 202-213. DOI: 10.6052/j.issn.1000-4750.2020.05.0310
Citation: MENG Long, HUANG Rui-yuan, JIANG Dong, XIAO Kai-tao, LI Ping. RESEARCH ON DYNAMIC SPLITTING-TENSILE PROPERTIES OF CONCRETES WITH DIFFERENT STRENGTH AT HIGH TEMPERATURE[J]. Engineering Mechanics, 2021, 38(3): 202-213. DOI: 10.6052/j.issn.1000-4750.2020.05.0310

RESEARCH ON DYNAMIC SPLITTING-TENSILE PROPERTIES OF CONCRETES WITH DIFFERENT STRENGTH AT HIGH TEMPERATURE

More Information
  • Received Date: May 19, 2020
  • Revised Date: September 21, 2020
  • Available Online: October 15, 2020
  • The large-diameter split Hopkinson pressure bar (SHPB) device and heating device were used to perform dynamic splitting-tensile experiments on three concrete materials with different strengths (C20, C45 and C70) at different temperatures (20 ℃, 200 ℃ and 400 ℃). The dynamic splitting strengths and corresponding failure patterns of concrete materials under the coupling effect of temperature and stress rate are obtained. The results show that the dynamic splitting strength of concrete material increases with the stress rate, but when the stress rates are similar, the dynamic splitting strength decreases significantly as the temperature increases. On this basis, the equations describing the relationship between the dynamic splitting strength and the stress rate of concrete materials at different temperatures are given, and the related material parameters are determined. Comparing the dynamic splitting strength of concrete materials under the coupling effect of stress rate and temperature, it is found that the temperature sensitivity of dynamic splitting strength decreases as the stress rate increases, and gradually decreases with the concrete material strength, but the stress rate sensitivity of dynamic splitting strength increases with the temperature.
  • [1]
    Wang Y Y, Li F Q, Xu L F, et al. Effect of elevated temperatures and cooling methods on strength of concrete made with coarse and fine recycled concrete aggregates [J]. Construction and Building Materials, 2019, 210(20): 540 − 547.
    [2]
    罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 − 14. doi: 10.6052/j.issn.1000-4750.2018.08.ST11

    Luo Daming, Niu Ditao, Su Li. Research progress on durability of stressed concrete under environmental actions [J]. Engineering Mechanics, 2019, 36(1): 1 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.ST11
    [3]
    赵建魁, 方琴, 陈力, 等. 爆炸与火荷载联合作用下RC梁耐火极限的数值分析[J]. 天津大学学报(自然科学与工程技术版), 2015, 10(48): 873 − 880.

    Zhao Jiankui, Fang Qin, Chen Li, et al. Numerical analysis of fire resistance of RC beams subjected to explosion and fire load [J]. Journal of Tianjin University (Science and Technology), 2015, 10(48): 873 − 880. (in Chinese)
    [4]
    Peng G F, Bian S H, Guo Z Q, et al. Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures [J]. Construction and Building Materials, 2008, 22(5): 948 − 955. doi: 10.1016/j.conbuildmat.2006.12.002
    [5]
    Ma Q, Guo R, Zhao Z, et al. Mechanical properties of concrete at high temperature-A view [J]. Construction and Building Materials, 2015, 93: 371 − 383. doi: 10.1016/j.conbuildmat.2015.05.131
    [6]
    金浏, 郝慧敏, 张仁波, 等. 高温下混凝土动态压缩行为细观数值研究[J]. 工程力学, 2019, 36(6): 70 − 78.

    Jin Liu, Hao Huimin, Zhang Renbo, et al. Meso-scale simulations of dynamic compressive behavior of concrete at elevated temperature [J]. Engineering Mechanics, 2019, 36(6): 70 − 78. (in Chinese)
    [7]
    金浏, 杨旺贤, 余文轩, 等. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56 − 65.

    Jin Liu, Yang Wangxian, Yu Wenxuan, et al. Dynamic compressive failure and size effect in lightweight aggregate concrete based on meso-scale simulation [J]. Engineering Mechanics, 2020, 37(3): 56 − 65. (in Chinese)
    [8]
    秦川, 张楚汉. 基于细观力学的混凝土劈拉破坏率相关特性研究[J]. 岩土力学, 2010, 31(12): 3771 − 3777. doi: 10.3969/j.issn.1000-7598.2010.12.013

    Qin Chuan, Zhang Chuhan. Study of dynamic behavior of concrete under splitting tensile tests based on mesomechanics [J]. Rock and Soil Mechanics, 2010, 31(12): 3771 − 3777. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.12.013
    [9]
    何栋尔, 章子华, 肖云逸, 等. CFRP-火灾后火灾后混凝土界面快速剥离试验[J]. 工程力学, 2019, 36(增刊 1): 285 − 292.

    He Donger, Zhang Zihua, Xiao Yunyi, et al. Experimental investigation on the interfacial debonding between CFRP and post-fire concrete under rapid loading [J]. Engineering Mechanics, 2019, 36(Suppl 1): 285 − 292. (in Chinese)
    [10]
    金鑫, 杜红秀, 阎蕊珍. 高性能混凝土高温后劈裂抗拉强度试验研究[J]. 太原理工大学学报, 2013, 44(5): 637 − 640. doi: 10.3969/j.issn.1007-9432.2013.05.019

    Jin Xin, Du Hongxiu, Yan Ruizhen. Experimental study on splitting tensile strength of HPC after elevated temperature [J]. Journal of Taiyuan University of Technology, 2013, 44(5): 637 − 640. (in Chinese) doi: 10.3969/j.issn.1007-9432.2013.05.019
    [11]
    Cao H, Ma Q Y. Dynamic splitting tensile performance of post pouring concrete adhered on precast concrete [J]. Journal of Building Materials, 2018, 21(1): 150 − 153.
    [12]
    张宗刚, 许金余, 苏灏扬, 等. 高温下混凝土动态强度特性[J]. 硅酸盐通报, 2015, 34(2): 501 − 505.

    Zhang Zonggang, Xu Jinyu, Su Haoyang, et al. Dynamic strength property of concrete at exposure to elevated temperature [J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 501 − 505. (in Chinese)
    [13]
    Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale [J]. International Journal of Impact Engineering, 2014, 66(4): 5 − 17.
    [14]
    胡泽斌, 许金余, 曹珊, 等. 聚苯乙烯混凝土的冲击压缩性能实验研究[J]. 兵工学报, 2011, 32(5): 619 − 624.

    Hu Zebin, Xu Jinyu, Cao Shan, et al. Experimental research on the impact compressive properties of styropor concrete [J]. Acta Armamentarii, 2011, 32(5): 619 − 624. (in Chinese)
    [15]
    胡时胜, 王道荣, 刘剑飞. 混凝土材料动态力学性能的实验研究[J]. 工程力学, 2001, 18(5): 115 − 118. doi: 10.3969/j.issn.1000-4750.2001.05.015

    Hu Shisheng, Wang Daorong, Liu Jianfei. Experimental study of dynamic mechanical behavior of concrete [J]. Engineering Mechanics, 2001, 18(5): 115 − 118. (in Chinese) doi: 10.3969/j.issn.1000-4750.2001.05.015
    [16]
    Cusatis G. Strain-rate effects on concrete behavior [J]. International Journal of Impact Engineering, 2011, 38(4): 162 − 170. doi: 10.1016/j.ijimpeng.2010.10.030
    [17]
    Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. Materials Journal, 1998, 95(6): 735 − 739.
    [18]
    焦楚杰, 蒋国平, 高乐. 钢纤维混凝土动态劈裂实验研究[J]. 兵工学报, 2010, 31(4): 469 − 472.

    Jiao Chujie, Jiang Guoping, Gao Le. Experimental research on the dynamic split properties of steel fiber reinforced concrete [J]. Acta Armamentarii, 2010, 31(4): 469 − 472. (in Chinese)
    [19]
    石高扬, 王志亮, 石恒. C75混凝土动态劈裂行为试验与数值模拟分析[J]. 哈尔滨工业大学学报, 2019, 51(2): 109 − 116. doi: 10.11918/j.issn.03676234.201711023

    Shi Gaoyang, Wang Zhiliang, Shi Heng. Experimental and numerical analysis of dynamic splitting behavior of C75 concrete [J]. Journal of Harbin Institute of Technology, 2019, 51(2): 109 − 116. (in Chinese) doi: 10.11918/j.issn.03676234.201711023
    [20]
    巫绪涛, 胡俊, 谢思发. EPS混凝土的动态劈裂强度和能量耗散[J]. 爆炸与冲击, 2013, 33(4): 369 − 374. doi: 10.3969/j.issn.1001-1455.2013.04.006

    Wu Xutao, Hu Jun, Xie Sifa. Dynamic splitting-tensile strength and energy dissipation property of EPS concrete [J]. Explosion and Shock Waves, 2013, 33(4): 369 − 374. (in Chinese) doi: 10.3969/j.issn.1001-1455.2013.04.006
    [21]
    Guo Y B, Gao G F, Jing L, et al. Quasi-static and dynamic splitting of high-strength concretes-tensile stress-strain response and effects of strain rate [J]. International Journal of Impact Engineering, 2019, 125(3): 188 − 211.
    [22]
    Huo J S, He Y M, Xiao L P, et al. Experimental study on dynamic behaviours of concrete after exposure to high temperatures up to 700 ℃ [J]. Materials and Structures, 2013, 46: 255 − 265. doi: 10.1617/s11527-012-9899-x
    [23]
    范飞林, 许金余. 大直径SHPB实验中的高温加载技术及其应用[J]. 爆炸与冲击, 2013, 33(1): 54 − 60. doi: 10.3969/j.issn.1001-1455.2013.01.007

    Fan Feilin, Xu Jinyu. High-temperature loading techniques in large-diameter SHPB experiment and its application [J]. Explosion and Shock Waves, 2013, 33(1): 54 − 60. (in Chinese) doi: 10.3969/j.issn.1001-1455.2013.01.007
    [24]
    谢若泽, 张方举, 颜怡霞, 等. 高温SHPB实验技术及其应用[J]. 爆炸与冲击, 2005, 25(4): 330 − 334. doi: 10.3321/j.issn:1001-1455.2005.04.008

    Xie Ruoze, Zhang Fangju, Yan Yixia, et al. High-temperature SHPB experimental technique and its application [J]. Explosion and Shock Waves, 2005, 25(4): 330 − 334. (in Chinese) doi: 10.3321/j.issn:1001-1455.2005.04.008
    [25]
    郭瑞奇, 任辉启, 张磊, 等. 分离式大直径Hopkinson杆实验技术研究进展[J]. 兵工学报, 2019, 40(7): 1518 − 1536. doi: 10.3969/j.issn.1000-1093.2019.07.023

    Guo Ruiqi, Ren Huiqi, Zhang Lei, et al. Research progress of large-diameter split hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518 − 1536. (in Chinese) doi: 10.3969/j.issn.1000-1093.2019.07.023
  • Cited by

    Periodical cited type(12)

    1. 杨婷,杨烨凯,刘中宪,徐慎春,吴成清. 高温后超高性能混凝土力学性能试验研究. 工程力学. 2025(04): 97-109 . 本站查看
    2. 姜同虎,汪光裕. 公路隧道火灾损伤计算及应急维修加固方案研究. 江西建材. 2024(01): 235-237 .
    3. 魏玮,张宏亮,邵珠山,江岩松. 微波和传统加热下混凝土劈裂抗拉性能分析. 工程力学. 2024(05): 134-145 . 本站查看
    4. 乔博阳,谷恭天,王成,宋诗祥,高扬. 天然气爆炸载荷作用下钢筋混凝土板毁伤试验研究. 兵工学报. 2024(07): 2393-2403 .
    5. 陈徐东,王许阳,季韬,刘季玄,宁英杰. 基于DIC的冲击劈拉荷载作用下UHPC动态抗拉力学性能研究. 工程科学与技术. 2024(06): 103-112 .
    6. 李晓琴,廖俊智,陈建飞,陆勇,陈前均. 混凝土动态力学行为数值模拟研究. 工程力学. 2024(12): 42-51 . 本站查看
    7. 钱凯,谭鑫宇,李治,于晓辉. 高温下钢筋混凝土板抗冲击性能及其影响因素. 工程力学. 2023(01): 132-143+154 . 本站查看
    8. 宝鼎晶,邱剑辉,姚明辉,刘俊辉. 橡胶改性对再生混凝土应力-应变性能的影响. 材料研究与应用. 2023(01): 166-170 .
    9. 赵海峰. 建筑施工材料检测与管理存在问题及对策分析. 科技创新与应用. 2023(17): 141-144 .
    10. 王志航,白二雷,潘璐,黄河,聂良学. 纳米碳纤维增强混凝土动态劈拉破坏的能耗规律研究. 工程爆破. 2023(04): 10-17 .
    11. 游全伟,王薇,南纯,宋良俊,姚雪丹. 基于CT图像的混凝土细观模型构建方法研究. 铁道科学与工程学报. 2023(09): 3385-3395 .
    12. 申海洋,刘凌晖,任磊. 高温作用下轻骨料混凝土力学性能研究. 铁道科学与工程学报. 2022(10): 2976-2983 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (627) PDF downloads (68) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return