Citation: | CHEN Feng-juan, GAO Cheng-chen, JIN Liu, DU Xiu-li. DEGRADATION OF MECHANICAL PROPERTIES OF CONCRETE WITH SERPENTINE AGGREGATES SUBJECTED TO FAST NEUTRON RADIATION[J]. Engineering Mechanics, 2025, 42(1): 32-43. DOI: 10.6052/j.issn.1000-4750.2022.08.0760 |
The deterioration mechanism of concrete materials with expanding serpentine aggregates subjected to fast neutron radiation (MeV>1.0) was investigated by numerical simulation. Considering the combined effects of temperature and aggregate radiation-induced volumetric expansion (RIVE) on the mechanical behavior and the residual elasticity of concrete, a two-stage numerical model was established at the mesoscopic scale. The residual elasticity of concrete was investigated numerically and validated by comparing with experimental data. Based on the numerical results, the analytical formulas of concrete swelling and the residual elasticities were proposed. The 3D numerical approach can provide an effective tool for assessing the combined effect of temperature and RIVE in the aggregates on the mechanical behavior and the residual elasticity of concrete with application to fast neutron radiation, and for revealing the deterioration mechanism of concrete materials with expanding aggregates. The proposed model serves as a first attempt and provides a theoretical benchmark and can be potentially applied for the life extension evaluation of aging concrete materials.
[1] |
AREL H Ş, AYDIN E, KORE S D. Ageing management and life extension of concrete in nuclear power plants [J]. Powder Technology, 2017, 321: 390 − 408. doi: 10.1016/j.powtec.2017.08.053
|
[2] |
ABDUL AWAL A S M. Failure mechanism of prepacked concrete [J]. Journal of Structural Engineering, 1988, 114(3): 727 − 732. doi: 10.1061/(ASCE)0733-9445(1988)114:3(727)
|
[3] |
KAPLAN M F. Concrete radiation shielding [M]. Essex: Longman Scientific & Technical, 1989.
|
[4] |
POMARO B. A review on radiation damage in concrete for nuclear facilities: From experiments to modeling [J]. Modelling and Simulation in Engineering, 2016: 4165746.
|
[5] |
ZAYED A M, MASOUD M A, RASHAD A M, et al. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete [J]. Construction and Building Materials, 2020, 260: 120473. doi: 10.1016/j.conbuildmat.2020.120473
|
[6] |
SONG Y M, ZHANG Z H, MAO J, et al. Research on fast intelligence multi-objective optimization method of nuclear reactor radiation shielding [J]. Annals of Nuclear Energy, 2020, 149: 107771. doi: 10.1016/j.anucene.2020.107771
|
[7] |
HOBBS L W, CLINARD JR F W, ZINKLE S J, et al. Radiation effects in ceramics [J]. Journal of Nuclear Materials, 1994, 216: 291 − 321. doi: 10.1016/0022-3115(94)90017-5
|
[8] |
MARUYAMA I, KONTANI O, TAKIZAWA M, et al. Development of soundness assessment procedure for concrete members affected by neutron and gamma-ray irradiation [J]. Journal of Advanced Concrete Technology, 2017, 15(9): 440 − 523. doi: 10.3151/jact.15.440
|
[9] |
BAŽANT Z P, KAPLAN M F. Concrete at high temperatures [J]. Proceedings of the Royal Society A, 1996, 83(561): 200 − 209.
|
[10] |
EWING R C, MELDRUM A, WANG L M, et al. Radiation-induced amorphization [J]. Reviews in Mineralogy and Geochemistry, 2000, 39(1): 319 − 361. doi: 10.2138/rmg.2000.39.12
|
[11] |
FIELD K G, REMEC I, LE PAPE Y. Radiation effects in concrete for nuclear power plants - Part I: Quantification of radiation exposure and radiation effects [J]. Nuclear Engineering and Design, 2015, 282: 126 − 143. doi: 10.1016/j.nucengdes.2014.10.003
|
[12] |
ELLEUCH M F, DUBOIS F, RAPPENEAU J. The effects of neutron radiations on special concretes and their components [J]. Social Science & Medicine, 1970, 43(3): 577 − 590.
|
[13] |
HILSDORF H K, KROPP J, KOCH H J. The effects of nuclear radiation on the mechanical properties of concrete [J]. American Concrete Institute, 1978, 55: 223 − 254.
|
[14] |
GIORLA A, VAITOVÁ M, LE PAPE Y, et al. Meso-scale modeling of irradiated concrete in test reactor [J]. Nuclear Engineering and Design, 2015, 295: 59 − 73. doi: 10.1016/j.nucengdes.2015.08.027
|
[15] |
SAKLANI N, BANWAT G, SPENCER B, et al. Damage development in neutron-irradiated concrete in a test reactor: Hygro-thermal and mechanical simulations [J]. Cement and Concrete Research, 2021, 142: 106349. doi: 10.1016/j.cemconres.2020.106349
|
[16] |
SASANO H, MARUYAMA I, SAWADA S, et al. Meso-scale modelling of the mechanical properties of concrete affected by radiation-induced aggregate expansion [J]. Journal of Advanced Concrete Technology, 2020, 18(10): 648 − 677. doi: 10.3151/jact.18.648
|
[17] |
TORRENCE C E, GIORL A B, LI Y J, et al. MOSAIC: An effective FFT-based numerical method to assess aging properties of concrete [J]. Journal of Advanced Concrete Technology, 2021, 19(2): 149 − 167. doi: 10.3151/jact.19.149
|
[18] |
LE PAPE Y, FIELD K G, REMEC I. Radiation effects in concrete for nuclear power plants, Part II: Perspective from micromechanical modeling [J]. Nuclear Engineering and Design, 2015, 282: 144 − 157. doi: 10.1016/j.nucengdes.2014.10.014
|
[19] |
KHMUROVSKA Y, ŠTEMBERK P. RBSM-based model for prediction of radiation-induced volumetric expansion of concrete aggregates [J]. Construction and Building Materials, 2021, 294: 123553. doi: 10.1016/j.conbuildmat.2021.123553
|
[20] |
DUNANT C F, SCRIVENER K L. Effects of uniaxial stress on alkali–silica reaction induced expansion of concrete [J]. Cement and Concrete Research, 2012, 42(3): 567 − 576. doi: 10.1016/j.cemconres.2011.12.004
|
[21] |
POMARO B, SALOMONI V A, GRAMEGNA F, et al. Radiation damage evaluation on concrete within a facility for selective production of exotic species (SPES Project), Italy [J]. Journal of Hazardous Materials, 2011, 194: 169 − 177. doi: 10.1016/j.jhazmat.2011.07.079
|
[22] |
KHMUROVSKA Y, ŠTEMBERK P, FEKETE T, et al. Numerical analysis of VVER-440/213 concrete biological shield under normal operation [J]. Nuclear Engineering and Design, 2019, 350: 58 − 66. doi: 10.1016/j.nucengdes.2019.05.004
|
[23] |
GASTON D, NEWMAN C, HANSEN G, et al. MOOSE: A parallel computational framework for coupled systems of nonlinear equations [J]. Nuclear Engineering and Design, 2009, 239(10): 1768 − 1778. doi: 10.1016/j.nucengdes.2009.05.021
|
[24] |
金浏, 余文轩, 杜修力. 应变率突增对混凝土动态拉伸破坏影响的细观模拟[J]. 振动与冲击, 2021, 40(2): 39 − 48.
JIN Liu, YU Wenxuan, DU Xiuli. Effect of the sudden increase of strain rate on concrete dynamic tensile failure based on 3D meso-scale simulation [J]. Journal of Vibration and Shock, 2021, 40(2): 39 − 48. (in Chinese)
|
[25] |
金浏, 夏海, 蒋轩昂, 等. 剪跨比对CFRP加固无腹筋混凝土梁剪切破坏及尺寸效应的影响研究[J]. 工程力学, 2021, 38(3): 50 − 59, 85. doi: 10.6052/j.issn.1000-4750.2020.01.0028
JIN Liu, XIA Hai, JIANG Xuanang, et al. Effect of shear-span ratio on shear failure and size effect of concrete beams without web reinforcement strengthened by CFRP [J]. Engineering Mechanics, 2021, 38(3): 50 − 59, 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0028
|
[26] |
金浏, 苗丽越, 李冬, 等. 轴压比对RC剪力墙剪切破坏尺寸效应影响的细观分析[J]. 工程力学, 2021, 38(9): 26 − 35. doi: 10.6052/j.issn.1000-4750.2020.08.0581
JIN Liu, MIAO Liyue, Li Dong, et al. Influence of axial compression ratio on size effect of RC shear wall under shear failure: Meso-scale simulation [J]. Engineering Mechanics, 2021, 38(9): 26 − 35. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0581
|
[27] |
金浏. 细观混凝土分析模型与方法研究 [D]. 北京: 北京工业大学, 2014.
JIN LIU. Study on meso-scopic model and analysis method of concrete [D]. Beijing: Beijing University of Technology, 2014. (in Chinese)
|
[28] |
WRIGGERS P, MOFTAH S O. Mesoscale models for concrete: Homogenisation and damage behaviour [J]. Finite Elements in Analysis and Design, 2006, 42(7): 623 − 636. doi: 10.1016/j.finel.2005.11.008
|
[29] |
杜修力, 韩亚强, 金浏, 等. 骨料空间分布对混凝土压缩强度及软化曲线影响统计分析[J]. 水利学报, 2015, 46(6): 631 − 639.
DU Xiuli, HAN Yaqiang, JIN Liu, et al. Statistical investigation on effects of aggregate distribution on concrete compression strength and the descending part of stress-strain curve [J]. Journal of Hydraulic Engineering, 2015, 46(6): 631 − 639. (in Chinese)
|
[30] |
金浏, 杨旺贤, 余文轩, 等. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56 − 65. doi: 10.6052/j.issn.1000-4750.2019.01.0012
JIN Liu, YANG Wangxian, YU Wenxuan, et al. Dynamic compressive failure and size effect in lightweight aggregate concrete based on meso-scale simulation [J]. Engineering Mechanics, 2020, 37(3): 56 − 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0012
|
[31] |
OLLIVIER J P, MASO J C, BOURDETTE B. Interfacial transition zone in concrete [J]. Advanced Cement Based Materials, 1995, 2(1): 30 − 38. doi: 10.1016/1065-7355(95)90037-3
|
[32] |
KHOSRAVIFARD A, HEMATIYAN M R, MARIN L. Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method [J]. Applied Mathematical Modelling, 2011, 35(9): 4157 − 4174. doi: 10.1016/j.apm.2011.02.039
|
[33] |
GLINICKI M A, JASKULSKI R, PICHÓR W, et al. Investigation of thermal properties of shielding concrete [C]// Proceedings of the 11th International Symposium on Brittle Matrix Composites. Warsaw: Institute of Fundamental Technological Research, 2015.
|
[34] |
JIN L, YU W X, DU X L. Size effect on static splitting tensile strength of concrete: Experimental and numerical studies [J]. Journal of Materials in Civil Engineering, 2020, 32(10): 04020308. doi: 10.1061/(ASCE)MT.1943-5533.0003382
|
[35] |
NADERI S, TU W L, ZHANG M Z. Meso-scale modelling of compressive fracture in concrete with irregularly shaped aggregates [J]. Cement and Concrete Research, 2021, 140: 106317. doi: 10.1016/j.cemconres.2020.106317
|
[36] |
XIONG Q R, WANG X F, JIVKOV A P. A 3D multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete [J]. Cement and Concrete Composites, 2020, 109: 103545. doi: 10.1016/j.cemconcomp.2020.103545
|
[37] |
SAITO T, DEMURA K. Relationship between compressive strength, static and dynamic modulus of elasticity of porous concretes [J]. Cement Science and Concrete Technology, 2015, 69(1): 251 − 256. doi: 10.14250/cement.69.251
|
[38] |
过镇海. 混凝土的强度和变形 [M]. 北京: 清华大学出版社, 1997.
GUO Zhenhai. Strength and deformation of concrete [M]. Beijing: Tsinghua University Press, 1997. (in Chinese)
|
[39] |
金浏, 余文轩, 杜修力, 等. 基于细观模拟的混凝土动态压缩强度尺寸效应研究[J]. 工程力学, 2019, 36(11): 50 − 61. doi: 10.6052/j.issn.1000-4750.2018.06.0363
JIN Liu, YU Wenxuan, DU Xiuli, et al. Reserch on size effect of dynamic compressive strength of concrete based on meso-scale simulation [J]. Engineering Mechanics, 2019, 36(11): 50 − 61. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0363
|
[40] |
李冬, 金浏, 杜修力, 等. 骨料级配对二维模型混凝土单轴抗拉强度影响的理论研究[J]. 工程力学, 2017, 34(6): 64 − 72. doi: 10.6052/j.issn.1000-4750.2015.11.0886
LI Dong, JIN Liu, DU Xiuli. A theoretical study on the influence of aggregate gradation on the tensile strength of 2-dimensional model concrete [J]. Engineering Mechanics, 2017, 34(6): 64 − 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.11.0886
|
[41] |
刘智光, 陈健云. 考虑材料组成特性的混凝土轴拉破坏过程细观数值模拟[J]. 工程力学, 2012, 29(7): 136 − 146. doi: 10.6052/j.issn.1000-4750.2010.09.0682
LIU Zhiguang, CHEN Jianyun. Meso-structural analysis of concrete specimens under uniaxial tension based on composition characteristics [J]. Engineering Mechanics, 2012, 29(7): 136 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.09.0682
|
[42] |
肖诗云, 田子坤. 混凝土单轴动态受拉损伤试验研究[J]. 土木工程学报, 2008, 41(7): 14 − 20. doi: 10.3321/j.issn:1000-131X.2008.07.003
XIAO Shiyun, TIAN Zikun. Experimental study on the uniaxial dynamic tensile damage of concrete [J]. China Civil Engineering Journal, 2008, 41(7): 14 − 20. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.07.003
|
[43] |
王学滨, 张君. 考虑抗拉强度及峰值后软化曲线非均质性的混凝土梁三点弯破坏过程数值模拟[J]. 工程力学, 2009, 26(12): 155 − 160.
WANG Xuebin, ZHANG Jun. Numerical simulation of failure process of three-point bending concrete beam considering heterogeneity of tensile strength and post-peak softening curve [J]. Engineering Mechanics, 2009, 26(12): 155 − 160. (in Chinese)
|
[44] |
杜修力, 揭鹏力, 金浏. 考虑初始缺陷影响的混凝土梁动态弯拉破坏模式分析[J]. 工程力学, 2015, 32(2): 74 − 81. doi: 10.6052/j.issn.1000-4750.2013.08.0713
DU Xiuli, JIE Pengli, JIN Liu. Dynamic flexural-tensile failure mode analysis of concrete beam with initial defect [J]. Engineering Mechanics, 2015, 32(2): 74 − 81. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.08.0713
|