GUAN Jun-feng, MA Yue, HE Shuang-hua, YAO Xian-hua, LI Lie-lie, CHEN Shan-shan, JIA Sheng. PREDICTING FRACTURE BEHAVIOR OF CONCRETE STRUCTURES BY DESIGNING QUANTITATIVE GEOMETRIC STRUCTURAL SPECIMENS[J]. Engineering Mechanics, 2024, 41(10): 49-63. DOI: 10.6052/j.issn.1000-4750.2022.08.0709
Citation: GUAN Jun-feng, MA Yue, HE Shuang-hua, YAO Xian-hua, LI Lie-lie, CHEN Shan-shan, JIA Sheng. PREDICTING FRACTURE BEHAVIOR OF CONCRETE STRUCTURES BY DESIGNING QUANTITATIVE GEOMETRIC STRUCTURAL SPECIMENS[J]. Engineering Mechanics, 2024, 41(10): 49-63. DOI: 10.6052/j.issn.1000-4750.2022.08.0709

PREDICTING FRACTURE BEHAVIOR OF CONCRETE STRUCTURES BY DESIGNING QUANTITATIVE GEOMETRIC STRUCTURAL SPECIMENS

More Information
  • Received Date: August 17, 2022
  • Revised Date: December 03, 2022
  • Available Online: January 06, 2023
  • A structural geometry parameter ae, which can reflect the coupling effects of specimen size, crack length, front & back boundaries and loading types, is used to replace the absolute size W used in the traditional size effect theory to explain the microphysical mechanism of the size effect of strength and fracture characteristics. The model and associate method for determining the true fracture and strength parameters of concrete without size effect are developed and established by two groups of design specimens with ae ratio of 3, not restricted by the selection of specimen size, crack length, loading type and other conditions under laboratory conditions. Based on the proposed method, the transformation curves of different fracture modes of concrete are established for the designed specimens with ae ratio equal to 3, and a ±15% variation of the curves can cover the test results of the specimens under laboratory conditions; Taking the equivalent area of the actual structure into the proposed analytical formula, the peak load of large-size actual structures can be predicted. Link is built to determine the real material properties of concrete in field conditions using laboratory results, and the goal of accurately predicting concrete fracture characteristics using quantitative laboratory specimens with different structural geometry parameters can be realized.

  • [1]
    ISO 12135: 2021, Metallic materials — Unified method of test for the determination of quasistatic fracture toughness [S]. London: BSI, 2021.
    [2]
    DL/T 5332−2005, 水工混凝土断裂试验规程[S]. 北京: 中国电力出版社, 2006.

    DL/T 5332−2005, Norm for fracture test of hydraulic concrete [S]. Beijing: China Electric Power Press, 2006. (in Chinese)
    [3]
    GB 50010−2010, 混凝土结构设计规范[S].北京: 中国建筑工业出版社, 2010.
    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture Industry Press, 2010. (in Chinese)
    [4]
    ASTM E399−22, Standard test method for linear-elastic plane-strain fracture toughness testing of metallic materials[S]. Philadelphia: American Society for Testing and Material, 2022.
    [5]
    UNE EN 1992-1-1−2013, Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings [S]. Spain: AENOR, 2013.
    [6]
    徐世烺, 赵国藩, 刘毅, 等. 三点弯曲梁法研究混凝土断裂能及其试件尺寸影响[J]. 大连理工大学学报, 1991, 31(1): 79 − 86.

    XU Shilang, ZHAO Guofan, LIU Yi, et al. Fracture energy of concrete and its variational trend in size effect studied by using three point-bending beams [J]. Journal of Dalian University of Technology, 1991, 31(1): 79 − 86. (in Chinese)
    [7]
    吴智敏, 徐世烺, 王金来, 等. 三点弯曲梁法研究砼双K断裂参数及其尺寸效应[J]. 水力发电学报, 2000(4): 16 − 24. doi: 10.3969/j.issn.1003-1243.2000.04.002

    WU Zhimin, XU Shilang, WANG Jinlai, et al. Double-K fracture parameter of concrete and its size effect by using three-point bending beam method [J]. Journal of Hydroelectric Engineering, 2000(4): 16 − 24. (in Chinese) doi: 10.3969/j.issn.1003-1243.2000.04.002
    [8]
    ZHAO Z F, KWON S H, SHAH S P. Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy [J]. Cement and Concrete Research, 2008, 38(8/9): 1049 − 1060.
    [9]
    胡少伟, 胡亮. 混凝土Ⅱ型断裂韧度尺寸效应的试验研究[J]. 水利学报, 2014, 45(增刊 1): 57 − 63.

    HU Shaowei, HU Liang. Experimental research on size effect of mode Ⅱ fracture toughness of concrete [J]. Journal of Hydraulic Engineering, 2014, 45(Suppl 1): 57 − 63. (in Chinese)
    [10]
    管俊峰,李庆斌,吴智敏. 采用峰值荷载法确定全级配水工混凝土断裂参数[J]. 工程力学, 2014, 31(8): 8 − 13.

    GUAN Junfeng, LI Qingbin, WU Zhimin. Determination of fully-grade hydraulic concrete fracture parameters by Peak-load method [J]. Engineering Mechanics, 2014, 31(8): 8 − 13. (in Chinese)
    [11]
    LI Q B, GUAN J F, WU Z M, et al. Fracture behavior of site-casting dam concrete [J]. ACI Material Journal, 2015, 112(1): 11 − 20.
    [12]
    GUAN J F, LI Q B, WU Z M, et al. Minimum specimen size for fracture parameters of site-casting dam concrete [J]. Construction and Building Materials, 2015, 93(9): 973 − 982.
    [13]
    管俊峰, 刘泽鹏, 姚贤华, 等. 确定混凝土开裂与拉伸强度及双K断裂参数[J]. 工程力学, 2020, 37(12): 124 − 137. doi: 10.6052/j.issn.1000-4750.2020.02.0084

    GUAN Junfeng, LIU Zepeng, YAO Xianhua, et al. Determination of the cracking strength, tensile strength and double-K fracture parameters of concrete [J]. Engineering Mechanics, 2020, 37(12): 124 − 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0084
    [14]
    高小峰, 胡昱, 杨宁, 等. 低热水泥全级配混凝土断裂试验及尺寸效应分析[J]. 工程力学, 2022, 39(7): 183 − 193. doi: 10.6052/j.issn.1000-4750.2021.04.0276

    GAO Xiaofeng, HU Yu, YANG Ning, et al. Fracture test and size effect analysis of low-heat cement fully-graded concrete [J]. Engineering Mechanics, 2022, 39(7): 183 − 193. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0276
    [15]
    BAŽANT Z P. Size effect in blunt fracture: concrete, rock, metal [J]. Journal of Engineering Mechanics, 1984, 110(4): 518 − 535. doi: 10.1016/j.engfracmech.2013.08.007
    [16]
    HOOVER C G, BAŽANT Z P, VOREL J, et al. Comprehensive concrete fracture tests: description and results [J]. Engineering Fracture Mechanics, 2017, 175(4): 146 − 167.
    [17]
    HU X Z, GUAN J F, WANG Y S, et al. Comparison of boundary and size effect models based on new developments [J]. Engineering Fracture Mechanics, 2017, 175: 146 − 167.
    [18]
    ÇAĞLAR Y, ŞENER S. Size effect tests of different notch depth specimens with support rotation measurements [J]. Engineering Fracture Mechanics, 2016, 157(5): 43 − 55.
    [19]
    金浏,蒋轩昂,杜修力. 轻骨料无腹筋混凝土梁剪切破坏及尺寸效应:细观模拟[J]. 工程力学, 2020, 37(7): 57 − 67. doi: 10.6052/j.issn.1000-4750.2019.05.0253

    JIN Liu, JIANG Xuanang, DU Xiuli. Shear failure and size effect of lightweight aggregate concrete beams without web reinforcement:A meso-scale study [J]. Engineering Mechanics, 2020, 37(7): 57 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0253
    [20]
    金浏,杨旺贤,余文轩, 等. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56 − 65. doi: 10.6052/j.issn.1000-4750.2019.01.0012

    JIN Liu, YANG Xianwang, YU Wenxuan, et al. Dynamic compressive failure and size effect in lightweight aggregate concrete based on meso-scale simulation [J]. Engineering Mechanics, 2020, 37(3): 56 − 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0012
    [21]
    GUAN J F, HU X Z, LI Q B. In-depth analysis of notched 3-p-b concrete fracture [J]. Engineering Fracture Mechanics, 2016, 165(10): 57 − 71.
    [22]
    管俊峰, 胡晓智, 李庆斌, 等. 边界效应与尺寸效应模型的本质区别及相关设计应用[J]. 水利学报, 2017, 48(8): 955 − 967.

    GUAN Junfeng, HU Xiaozhi, LI Qingbin, et al. Essential difference and design application of boundary effect model and size effect model [J]. Journal of Hydraulic Engineering, 2017, 48(8): 955 − 967. (in Chinese)
    [23]
    管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10): 1298 − 1306.

    Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory [J]. Journal of Hydraulic Engineering, 2016, 47(10): 1298 − 1306. (in Chinese)
    [24]
    GUAN J F, HU X Z, XIE C P, et al. Wedge-splitting tests for tensile strength and fracture toughness of concrete [J]. Theoretical and Applied Fracture Mechanics, 2018, 93(2): 263 − 275.
    [25]
    GUAN J F, LI C M, WANG J, et al. Determination of fracture parameter and prediction of structural fracture using various concrete specimen types [J]. Theoretical and Applied Fracture Mechanics, 2019, 100(4): 114 − 127.
    [26]
    管俊峰, 姚贤华, 白卫峰, 等. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1): 70 − 79, 87.

    GUAN Junfeng, YAO Xianhua, BAI Weifeng, et al. Determination of fracture toughness and tensile strength of concrete using small specimens [J]. Engineering Mechanics, 2019, 36(1): 70 − 79, 87. (in Chinese)
    [27]
    GUAN J F, SONG Z K, ZHANG M, et al. Concrete fracture considering aggregate grading [J]. Theoretical and Applied Fracture Mechanics, 2020, 112(4): 102833.
    [28]
    管俊峰, 鲁猛, 王昊, 等. 几何与非几何相似试件确定混凝土韧度及强度[J]. 工程力学, 2021, 38(9): 45 − 63. doi: 10.6052/j.issn.1000-4750.2020.08.0573

    GUAN Junfeng, LU Meng, WANG Hao et al. Determination of fracture toughness and tensile strength of concrete using geometrically and non-geometrically similar specimens [J]. Engineering Mechanics, 2021, 38(9): 45 − 63. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0573
    [29]
    GUAN J F, YUAN P, LI L L, et al. Rock fracture with statistical determination of fictitious crack growth [J]. Theoretical and Applied Fracture Mechanics, 2021, 112(4): 102895.
    [30]
    GUAN J F, YIN Y N, LI Y, et al. A design method for determining fracture toughness and tensile strength pertinent to concrete sieving curve [J]. Engineering Fracture Mechanics, 2022, 271(8): 108598.
    [31]
    YAO X H, LI L L, GUAN J F, et al. Initial cracking strength and initial fracture toughness from three-point bending and wedge splitting concrete specimens [J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 44(3): 601 − 621.
    [32]
    WU Z M , HUA R , ZHENG J J , et al. An experimental investigation on the FPZ properties in concrete using digital image correlation technique [J]. Engineering Fracture Mechanics, 2011, 78(17): 2978 − 2990.
    [33]
    OHNO K , UJI K , UENO A , et al. Fracture process zone in notched concrete beam under three-point bending by acoustic emission [J]. Construction and Building Materials, 2014, 67(9): 139 − 145.
    [34]
    NITIN N B, KISHEN J M. Response based damage assessment using acoustic emission energy for plain concrete [J]. Construction and Building Materials, 2021, 269(2): 121241.
    [35]
    LEHKÝ D, KUCHARCZYKOVÁ B, ŠIMONOVÁ H, et al. Comprehensive fracture tests of concrete for the determination of mechanical fracture parameters [J]. Structural Concrete, 2020, 23(1): 1 − 16.
    [36]
    徐世烺, 周厚贵, 高洪波, 等. 各种级配大坝混凝土双K断裂参数试验研究[J]. 土木工程学报, 2006, 39(11): 50 − 62.

    XU Shilang, ZHOU Hougui, GAO Hongbo, et al. An experimental study on double-K fracture parameters of concrete for dam construction with various grading aggregates [J]. China Civil Engineering Journal, 2006, 39(11): 50 − 62. (in Chinese)
    [37]
    ZHANG X F, XU S L. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis [J]. Engineering Fracture Mechanics, 2011, 78(10): 2115 − 2138.

Catalog

    Article Metrics

    Article views (175) PDF downloads (36) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return