基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法

林阳, 封周权, 华旭刚, 陈政清

林阳, 封周权, 华旭刚, 陈政清. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192-200. DOI: 10.6052/j.issn.1000-4750.2019.03.0143
引用本文: 林阳, 封周权, 华旭刚, 陈政清. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192-200. DOI: 10.6052/j.issn.1000-4750.2019.03.0143
LIN Yang, FENG Zhou-quan, HUA Xu-gang, CHEN Zheng-qing. ARTIFICIAL BEE COLONY ALGORITHM FOR FLUTTER DERIVATIVES IDENTIFICATION OF BRIDGE DECKS USING FREE VIBRATION RECORDS[J]. Engineering Mechanics, 2020, 37(2): 192-200. DOI: 10.6052/j.issn.1000-4750.2019.03.0143
Citation: LIN Yang, FENG Zhou-quan, HUA Xu-gang, CHEN Zheng-qing. ARTIFICIAL BEE COLONY ALGORITHM FOR FLUTTER DERIVATIVES IDENTIFICATION OF BRIDGE DECKS USING FREE VIBRATION RECORDS[J]. Engineering Mechanics, 2020, 37(2): 192-200. DOI: 10.6052/j.issn.1000-4750.2019.03.0143

基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法

基金项目: 国家自然科学基金项目(51708203);湖南省高校创新平台开放基金项目(17K022);中央高校基本科研业务费项目(531118010047)
详细信息
    作者简介:

    林阳(1996-),男,河南人,硕士生,主要从事桥梁风工程研究(E-mail:linyang@hnu.edu.cn);华旭刚(1978-),男,浙江人,教授,博士,博导,主要从事风工程研究(E-mail:cexghua@hnu.edu.cn);陈政清(1947-),男,湖南人,教授,博士,博导,主要从事工程力学研究(E-mail:zqchen@hnu.edu.cn).

    通讯作者:

    封周权(1982-),男,湖南人,助理教授,博士,硕导,主要从事风工程及结构监测与控制研究(E-mail:zqfeng@hnu.edu.cn).

  • 中图分类号: U441.3

ARTIFICIAL BEE COLONY ALGORITHM FOR FLUTTER DERIVATIVES IDENTIFICATION OF BRIDGE DECKS USING FREE VIBRATION RECORDS

  • 摘要: 基于桥梁节段模型风洞试验自由振动衰减时程信号,提出了桥梁断面颤振导数识别的人工蜂群算法。基于最小二乘原理,将竖弯和扭转信号的整体残差平方和作为目标函数,使用人工蜂群算法对相关参数进行寻优搜索,识别出桥梁断面的颤振导数。与其他迭代算法相比,人工蜂群算法是受生物启发产生的寻优算法,对初值没有要求,从而避免了迭代初值对识别精度的影响。为考察人工蜂群算法在桥梁断面颤振导数识别中的有效性,进行了理想平板模型仿真以及某大桥节段模型风洞试验,结果表明,桥梁断面颤振导数识别的人工蜂群算法具有较好的稳定性和可靠性。
    Abstract: Based on the coupled free vibration records of bridge deck sectional model testing, a flutter derivatives identification method based on the artificial bee colony (ABC) algorithm is proposed. The objective function is constructed as the ensemble residual quadratic sum of the vertical and torsional vibration time histories in the sense of least squares. The ABC algorithm is used to search the optimal parameters so that the value of the objective function is minimized. Compared with other iteration methods, the ABC algorithm can facilitate the identification process with no need for initial values. In order to investigate the effectiveness of the ABC algorithm in the flutter derivatives identification, an ideal thin-plate model simulation and a real bridge sectional model testing are carried out. The results show that the ABC algorithm for the flutter derivatives identification of bridge decks is robust and reliable.
  • [1] 徐昕宇, 李永乐, 廖海黎, 等. 双层桥面桁架梁三塔悬索桥颤振性能优化风洞试验[J]. 工程力学, 2017, 34(5):142-147. Xu Xinyu, Li Yongle, Liao Haili, et al. Flutter optimization of a double-deck truss-stiffened girder three-tower suspension bridge by wind tunnel tests[J]. Engineering Mechanics, 2017, 34(5):142-147. (in Chinese)
    [2] 祝志文, 顾明, 陈政清. 桥梁断面颤振导数的CFD全带宽识别法[J]. 工程力学, 2007, 24(9):80-87. Zhu Zhiwen, Gu Ming, Chen Zhengqing. Extraction of flutter derivatives of bridge deck among full bandwidth of reduced wind speeds[J]. Engineering Mechanics, 2007, 24(9):80-87. (in Chinese)
    [3] Xu F Y, Zhang Z B. Free vibration numerical simulation technique for extracting flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170:226-237.
    [4] Andersen M S, Ole Johansson J, Brandt A. Flutter derivatives from free decay tests of a rectangular B/D=10 section estimated by optimized system identification methods[J]. Engineering Structure, 2018, 156:284-293.
    [5] Ding Q S, Dong S H, Zhou Z Y. Identification of aerodynamic derivatives of bridge decks at high testing wind speed[J]. Canadian Journal of Civil Engineering, 2018, 45(11):1004-1014.
    [6] Ding Q S, Zhou Z Y, Zhu L D, et al. Identification of flutter derivatives of bridge decks with free vibration technique[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12):911-918.
    [7] Bartoli G, Contri S, Mannini C, et al. Toward an improvement in the identification of bridge deck flutter derivatives[J]. Journal of Engineering Mechanics, 2009, 135(8):771-785.
    [8] 陈政清, 胡建华. 桥梁颤振导数识别的时域法与频域法对比研究[J]. 工程力学, 2005, 22(6):127-133. Chen Zhengqing, Hu Jianhua. A comparative study between time-domain method and frequencydomain method for identification of bridge flutter derivatives[J]. Engineering Mechanics, 2005, 22(6):127-133. (in Chinese)
    [9] 王骑, 李郁林, 李志国, 等. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10):13-19. Wang Qi, Li Yulin, Li Zhiguo, et al. Flutter derivatives of a thin plate model under different attack angles[J]. Engineering Mechanics, 2018, 35(10):13-19. (in Chinese)
    [10] 秦仙蓉, 顾明. 紊流风场中桥梁气动导数识别的随机方法[J]. 土木工程学报, 2005, 38(4):73-77. Qin Xianrong, Gu Ming. Stochastic system method for identification of aerodynamic derivatives of bridge decks in turbulent flow[J]. China Civil Engineering Journal, 2005, 38(4):73-77. (in Chinese)
    [11] Boonyapinyo V, Janesupasaeree T. Data-driven stochastic subspace identification of flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12):784-799.
    [12] 张若雪.桥梁结构气动参数识别的理论和试验研究[D]. 上海:同济大学, 1998:1-112. Zhang Ruoxue. Theoretical and experiment study on identification of aerodynamic derivatives of bridge decks[D]. Shanghai:Tongji University, 1998:1-112. (in Chinese)
    [13] 丁泉顺. 大跨度桥梁耦合颤抖振响应的精细化分析[D]. 上海:同济大学, 2001:10-90. Ding Quanshun. Refinement of coupled flutter and buffeting analysis for long-span bridges[D]. Shanghai:Tongji University, 2001:10-90. (in Chinese)
    [14] 李加武, 张斐, 吴拓. 桥梁断面颤振导数识别的加权最小二乘法[J]. 振动工程学报, 2017, 30(6):993-1000. Li Jiawu, Zhang Fei, Wu Tuo. Weighted least square method for identification of flutter derivatives of bridge section[J]. Journal of vibration engineering, 2017, 30(6):993-1000. (in Chinese)
    [15] Gu M, Zhang R X, Xiang H F. Identification of flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(2):151-162.
    [16] 李永乐, 廖海黎, 强士中. 桥梁断面颤振导数识别的加权整体最小二乘法[J]. 土木工程学报, 2004, 37(3):80-84. Li Yongle, Liao Haili, Qiang Shizhong. Identification for flutter derivatives of bridge deck cross section by weighting ensemble least-square method[J]. China Civil Engineering Journal, 2004, 37(3):80-84. (in Chinese)
    [17] 祝志文, 顾明. 基于自由振动响应识别颤振导数的特征系统实现算法[J]. 振动与冲击, 2006, 25(5):28-31. Zhu Zhiwen, Gu Ming. Identification of flutter derivatives by using eigensystem realization algorithm[J]. Journal of Vibration and Shock, 2006, 25(5):28-31. (in Chinese)
    [18] 李友祥, 祝志文, 陈政清. 识别桥梁断面颤振导数的快速相关特征系统实现算法[J]. 振动与冲击, 2008(8):117-120. Li Youxiang, Zhu Zhiwen, Chen Zhengqing. Implementation of eigensystem realization algorithm with data correlation to identify flutter derivatives of bridges[J]. Journal of Vibration and Shock, 2008(8):117-120. (in Chinese)
    [19] 许福友, 陈艾荣, 张哲. 识别桥梁断面18个颤振导数的梯度下降算法[J]. 工程力学, 2008, 25(6):81-87. Xu Fuyou, Chen Airong, Zhang Zhe. Identification of 18 flutter derivatives of bridge decks using gradient declining algorithm[J]. Engineering Mechanics, 2008, 25(6):81-87. (in Chinese)
    [20] 许福友, 陈艾荣, 马如进. 桥梁断面颤振导数识别的随机搜索方法[J]. 土木工程学报, 2006, 39(7):63-68. Xu Fuyou, Chen Airong, Ma Rujin. Identification of flutter derivatives of bridge decks on the basis of stochastic search technique[J]. China Civil Engineering Journal, 2006, 39(7):63-68. (in Chinese)
    [21] Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report-TRo6[R]. Kayseri:Erciyes University, 2005:1-10.
    [22] 陈政清. 桥梁风工程[M]. 北京:人民交通出版社, 2005:5. Cheng Zhengqing. Bridge wind engineering[M]. Beijing:China Communications Press, 2005:5. (in Chinese)
    [23] 江铭炎, 袁东风. 人工蜂群算法及其应用[M]. 北京:科学出版社, 2014:11. Jiang Mingyan, Yuan Dongfeng. Atificial bee colony algorithm and its application[M]. Beijing:Science Press, 2014:11. (in Chinese)
    [24] Theodorson T. General theory of aerodynamic instability and mechanism of flutter[R]. Washington:NACA Report No.496, 1935:413-433.
  • 期刊类型引用(16)

    1. 黄志强,段宇星,宋晓伟,王杰,付铭威,李刚. 油气勘探检波器尾椎-大地扫频振动耦合性能研究. 机械强度. 2025(03): 104-112 . 百度学术
    2. 巩瑞杰,袁腾,叶会师,黄汉波,闫鹏. 露天矿爆破地震波传播规律. 华北理工大学学报(自然科学版). 2024(04): 59-65 . 百度学术
    3. 李朝阳,向波,蒋瑜阳. 岩质边坡的自震频率对其加速度放大系数的影响. 湖南城市学院学报(自然科学版). 2023(04): 1-5 . 百度学术
    4. 李贺龙,王浩,诸洲,张建经,郭建婷,牛家永. 基于量纲分析的戈壁地区爆破振动衰减模型. 科学技术与工程. 2023(28): 11947-11953 . 百度学术
    5. 何梦,诸洲,李贺龙. 基坑开挖爆破振动信号的小波包分析. 江苏科技信息. 2022(08): 33-37 . 百度学术
    6. 邹烽,席田,胡业红,谢文,何梦,高凤琴,诸洲,张建经. 爆破振动综合减震措施的减震效应研究. 中国安全生产科学技术. 2022(06): 119-126 . 百度学术
    7. 雷浩,吴红刚,高岩,钱建固,梁彧,李德柱. 隧道交叉穿越边坡的动力响应振动台试验研究. 岩石力学与工程学报. 2022(S2): 3327-3338 . 百度学术
    8. 刘洋. 小净间距正交上跨隧道加速度响应振动台试验研究. 科技创新与应用. 2021(07): 22-26 . 百度学术
    9. 刘洋. 小净间距交叉隧道振动规律试验研究. 现代城市轨道交通. 2021(02): 41-44 . 百度学术
    10. 王东,刘蕾蕾,余强,邱毅,牛家永. 框架锚索加固边坡地震响应的动力计算方法浅析. 公路交通技术. 2021(01): 9-13+20 . 百度学术
    11. 张继琪,江学良,杨慧,赵富发,刘潺,石洪涛. 含连拱隧道边坡地震响应特性研究. 应用力学学报. 2021(02): 597-606 . 百度学术
    12. 江学良,张继琪,杨慧,赵富发,范文臣. 多因素作用下含连拱隧道边坡地震动力响应特性研究. 振动工程学报. 2020(06): 1291-1301 . 百度学术
    13. 余涛涛. 浅埋偏压连拱隧道地震加速度响应特性研究. 湖南文理学院学报(自然科学版). 2019(02): 71-75 . 百度学术
    14. 江学良,牛家永,杨慧,王飞飞. 含隧道边坡水平屈服加速度的上限分析. 振动与冲击. 2019(09): 133-139+165 . 百度学术
    15. 林顺,向波,蒋瑜阳,王晓文. 框架锚索边坡支护结构的离心机模型试验研究. 四川建筑. 2019(06): 139-142+146 . 百度学术
    16. 江学良,牛家永,杨慧,祝中林,连鹏远. 下伏隧道层状岩质边坡地震响应特性的大型振动台试验研究. 应用力学学报. 2018(04): 762-768+931 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  663
  • HTML全文浏览量:  69
  • PDF下载量:  144
  • 被引次数: 25
出版历程
  • 收稿日期:  2019-03-26
  • 修回日期:  2019-07-03
  • 刊出日期:  2020-05-26

目录

    /

    返回文章
    返回