轴向钢筋增强混凝土一维应力层裂实验研究

俞鑫炉, 付应乾, 董新龙, 周风华, 宁建国, 徐纪鹏

俞鑫炉, 付应乾, 董新龙, 周风华, 宁建国, 徐纪鹏. 轴向钢筋增强混凝土一维应力层裂实验研究[J]. 工程力学, 2020, 37(1): 80-87. DOI: 10.6052/j.issn.1000-4750.2019.01.0026
引用本文: 俞鑫炉, 付应乾, 董新龙, 周风华, 宁建国, 徐纪鹏. 轴向钢筋增强混凝土一维应力层裂实验研究[J]. 工程力学, 2020, 37(1): 80-87. DOI: 10.6052/j.issn.1000-4750.2019.01.0026
YU Xin-lu, FU Ying-qian, DONG Xin-long, ZHOU Feng-hua, NING Jian-guo, XU Ji-peng. EXPERIMENTAL STUDY ON ONE-DIMENSIONAL STRESS SPALL OF UNIDIRECTIONAL REINFORCED CONCRETE[J]. Engineering Mechanics, 2020, 37(1): 80-87. DOI: 10.6052/j.issn.1000-4750.2019.01.0026
Citation: YU Xin-lu, FU Ying-qian, DONG Xin-long, ZHOU Feng-hua, NING Jian-guo, XU Ji-peng. EXPERIMENTAL STUDY ON ONE-DIMENSIONAL STRESS SPALL OF UNIDIRECTIONAL REINFORCED CONCRETE[J]. Engineering Mechanics, 2020, 37(1): 80-87. DOI: 10.6052/j.issn.1000-4750.2019.01.0026

轴向钢筋增强混凝土一维应力层裂实验研究

基金项目: 国家自然科学基金重大资助项目(11390361)
详细信息
    作者简介:

    俞鑫炉(1989-),男,浙江仙居人,博士生,主要从事爆炸力学研究(E-mail:yuxinlunbu@163.com);付应乾(1986-),男,山东滨州人,博士生,主要从事爆炸力学研究(E-mail:imech2012@gmail.com);董新龙(1964-),男,浙江杭州人,教授,博士,主要从事冲击动力学研究(E-mail:dongxinlong@nbu.edu.cn);宁建国(1963-),男,北京人,教授,博士,主要从事爆炸力学、计算力学与弹药工程研究(E-mail:jgning@bit.edu.cn);徐纪鹏(1993-),男,河南驻马店人,硕士生,主要从事冲击动力学研究(E-mail:1518326591@qq.com).

    通讯作者:

    周风华(1964-),男,浙江慈溪人,研究员,博士,博导,主要从事爆炸力学和冲击动力学研究(E-mail:fzhou@nbu.edu.cn).

  • 中图分类号: TU375

EXPERIMENTAL STUDY ON ONE-DIMENSIONAL STRESS SPALL OF UNIDIRECTIONAL REINFORCED CONCRETE

  • 摘要: 基于φ74 mmSHPB实验平台进行了混凝土及轴向钢筋增强混凝土(UDRC)杆的一维应力层裂实验,采用超高速相机拍摄实验中杆表面的实时变形情况,使用数字图像相关法(DIC)分析杆表面的位移场及应变场演化过程,探讨混凝土及增强混凝土在应力波加载过程中发生拉伸断裂(层裂)的规律,并进一步结合有限元分析了钢筋在层裂过程中的作用。结果表明:UDRC杆中应力波的传播满足一维应力假设;钢筋对UDRC发生拉伸层裂的影响可以忽略,而在混凝土基体断裂后将使结构保持完整;断裂试件中的裂纹在拉压应力波交替作用下反复张开闭合,随着应力波在杆中的衰减而趋于稳定;UDRC与混凝土的层裂强度基本相同,且具有相似的应变率增强效应;在实验加载范围内,光圆钢筋和螺纹钢筋的结构增强效果没有区别。
    Abstract: The one-dimensional stress spalling experiments were conducted on concrete and unidirectional reinforced concrete (UDRC) bars. The cylindrical bar specimenwith a large aspect ratio were loaded on a 74 mm diameter Hopkinson pressure bar loading platform. The displacement field and the strain field on the surface of the specimen were recorded by using an ultra-high speed video camera combined with a digital image correlation (DIC) system. The spall strength of both materials was measured, and the role of steel bar in the process of spalling was investigated. The results show that both the concrete and the reinforced concrete bar specimen stay in a one-dimensional stress state during loading, and therefore the one-dimensional stress wave propagation theory can be applied. The steel bar reinforcement in RC bar does not change the spall strength of the specimen, but maintain its structural integrity after matrix fracture. The spall strength of both concrete and reinforced concrete bars are basically identical, and have similar rate dependency.
  • [1] Reinhardt H W. Concrete under impact loading, tensile strength and bond[J]. HERON, 1982, 27(3):1-48.
    [2] Lu D, Wang G, Du X, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering, 2017, 103(5):124-137.
    [3] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. Materials Journal, 1998, 95(6):735-739.
    [4] Malvar L J, Crawford J E. Dynamic increase factors for concrete[R]. Orlando, FL:Twenty-eighth DDESB Seminar, 1998.
    [5] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥:中国科学技术大学出版社, 2017:227-228. Wang Lili, Hu Shisheng, Yang Liming, et al. Material dynamics[M]. Hefei:University of Science and Technology of China of Press, 2017:227-228. (in Chinese)
    [6] Reynolds C E, Steedman J C, Threlfall A J. Reinforced concrete designer's handbook[M]. London:E & FN Spon, Taylor & Francis Group Press, 2007:37-48.
    [7] Low H Y, Hao H. Reliability analysis of direct shear and flexural failure modes of RC slabs under explosive loading[J]. Engineering Structures, 2002, 24(2):189-198.
    [8] Yuen S C K, Nurick G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part I:Subjected to uniform blast load[J]. International Journal of Impact Engineering, 2005, 31(1):55-83.
    [9] Langdon G S, Yuen S C K, Nurick G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part II:Localized blast loading[J]. International Journal of Impact Engineering, 2005, 31(1):85-111.
    [10] 汪维, 张舵, 卢芳云, 等. 方形钢筋混凝土板的近场抗爆性能[J]. 爆炸与冲击, 2012, 32(3):251-258.Wang Wei, Zhang Duo, Lu Fangyun, et al. Antiexplosion performances of square reinforced concrete slabs under close-in explosions[J]. Explosion and Shock Waves, 2012, 32(3):251-258. (in Chinese)
    [11] 孙珊珊, 赵均海, 贺拴海, 等. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5):27-35. Sun Shanshan, Zhao Junhai, He Shuanhai, et al. Dynamic response of concrete-filled steel tube piers under blast loadings[J]. Engineering Mechanics, 2018:35(5):27-35. (in Chinese)
    [12] 陶慕轩, 丁然, 潘文豪, 等. 传统纤维模型的一些新发展[J]. 工程力学, 2018, 35(3):1-21. Tao Muxuan, Ding Ran, Pan Wenhao, et al. Some advances in conventional fiber beam-column model[J]. Engineering Mechanics, 2018, 35(3):1-21. (in Chinese)
    [13] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J].工程力学, 2019, 36(3):192-202. De Mengke, Lü Hao, Song Hengzhao. Experimental research on aseismic behavior of high ductile concrete filled steel plate composite coupling beams[J]. Engineering Mechanics, 2019, 36(3):192-202. (in Chinese)
    [14] Liu J I N, Wenxuan Y U, Xiuli D U, et al. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates[J]. International Journal of Impact Engineering, 2019, 125(3):1-12.
    [15] Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling[J]. International Journal of Impact Engineering, 2001, 25(4):387-409.
    [16] Forquin P, Erzar B. Dynamic fragmentation process in concrete under impact and spalling tests[J]. International Journal of Fracture, 2010, 163(1-2):193-215.
    [17] Forquin P, Lukić B. On the processing of spalling experiments. Part I:Identification of the dynamic tensile strength of concrete[J]. Journal of Dynamic Behavior of Materials, 2018, 4(1):34-55.
    [18] Diaz-Rubio F G, Perez J R, Galvez V S. The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics[J]. International Journal of Impact Engineering, 2002, 27(2):161-177.
    [19] 张磊, 胡时胜, 陈德兴, 等. 钢纤维混凝土的层裂特征. 爆炸与冲击, 2009, 29(2):119-124. Zhang Lei, Hu Shisheng, Chen Dexing, et al. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion and Shock Waves, 2009, 29(2):119-124. (in Chinese)
    [20] 俞鑫炉, 付应乾, 董新龙, 等. 混凝土一维应力层裂实验的全场DIC分析[J]. 力学学报, 2019(4):1064-1072. Yu Xinlu, Fu Yingqian, Dong Xinlong, et al. Full field DIC analysis method for one-dimensional spall strength measurement of concrete[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4):1064-1072. (in Chinese)
    [21] Rossi P, Van M J G M, Toutlemonde F, et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension[J]. Materials & Structures, 1994, 27(5):260-264.
    [22] Zielinski, A J, Reinhardt H W, Körmeling H A. Experiments on concrete under uniaxial impact tensile loading[J]. Matériaux et Construction.
    [23] Mellinger F M, Brikimer D L. Measurements of stress and strain on cylindrical test specimens of rock and concrete under impact loading[R]. Department of the Army, Ohio River Division Laboratories, 1966,Tech Rep No. 4-46.
    [24] Birkimer D L. Critical normal fracture strain of Portland cement concrete[D]. Cincinnati, OH:University of Cincinnati, 1968:3731-3731.
    [25] Birkimer D L, Robert L. Dynamic tensile strength of concrete materials[J]. Journal of Proceedings, 1971, 68(1):47-49.
    [26] McVay, Mark K. Spall damage of concrete structures[R]. US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss., USA, Technical Report SL-88-22, 1988.
    [27] Brara A, Klepaczko J R. Experimental characterization of concrete in dynamic tension[J]. Mechanics of Materials, 2006, 38(3):253-267.
    [28] Erzar B, Forquin P. Experiments and mesoscopic modelling of dynamic testing of concrete[J]. Mechanics of Materials, 2011, 43(9):505-527.
    [29] Cowell, Walter L. Dynamic properties of plain Portland cement concrete[R]. Technical Report No. R447, DASA130181, Us Naval Civil Engineering Laboratory, California, 1966.
    [30] Takeda J. Deformation and fracture of concrete subjected to dynamic load[J]. Mechanical Behavior of Materials, 1972, 4(739):77-86.
    [31] John R, Antoun T, Rajendran A M. Effect of strain rate and size on tensile strength of concrete[C]. Shock Compression of Condensed Matter-1991, Elsevier Science Publishers, 1991:501-504.
  • 期刊类型引用(4)

    1. 刘如珍,乔丹阳,刘正疆. 基于数字图像相关方法分析土石混合体的变形行为. 公路工程. 2024(03): 76-84 . 百度学术
    2. 李晓琴,廖俊智,陈建飞,陆勇,陈前均. 混凝土动态力学行为数值模拟研究. 工程力学. 2024(12): 42-51 . 本站查看
    3. 程坤,杜引光,刘漳. 重力U形台非常规裂缝分析及加固对策. 中外公路. 2023(02): 140-143 . 百度学术
    4. 阚黎黎,庞成凯,王飞,薛佳旭,赵树龙,刘卫东,赵玉静. 聚乙烯纤维增强高延性碱矿渣复合材料的拉压性能及裂缝分布. 复合材料学报. 2021(12): 4305-4312 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  369
  • HTML全文浏览量:  31
  • PDF下载量:  57
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-06-26
  • 刊出日期:  2020-01-24

目录

    /

    返回文章
    返回