Processing math: 100%

混凝土动态力学行为数值模拟研究

李晓琴, 廖俊智, 陈建飞, 陆勇, 陈前均

李晓琴, 廖俊智, 陈建飞, 陆勇, 陈前均. 混凝土动态力学行为数值模拟研究[J]. 工程力学, 2024, 41(12): 42-51. DOI: 10.6052/j.issn.1000-4750.2022.10.0865
引用本文: 李晓琴, 廖俊智, 陈建飞, 陆勇, 陈前均. 混凝土动态力学行为数值模拟研究[J]. 工程力学, 2024, 41(12): 42-51. DOI: 10.6052/j.issn.1000-4750.2022.10.0865
LI Xiao-qin, LIAO Jun-zhi, CHEN Jian-fei, LU Yong, CHEN Qian-jun. NUMERICAL ANALYSIS ON DYNAMIC MECHANICAL BEHAVIOR OF CONCRETE[J]. Engineering Mechanics, 2024, 41(12): 42-51. DOI: 10.6052/j.issn.1000-4750.2022.10.0865
Citation: LI Xiao-qin, LIAO Jun-zhi, CHEN Jian-fei, LU Yong, CHEN Qian-jun. NUMERICAL ANALYSIS ON DYNAMIC MECHANICAL BEHAVIOR OF CONCRETE[J]. Engineering Mechanics, 2024, 41(12): 42-51. DOI: 10.6052/j.issn.1000-4750.2022.10.0865

混凝土动态力学行为数值模拟研究

基金项目: 国家自然科学基金项目(52168029,51968035);云南省万人计划青年拔尖人才项目(云人社通[2020]150号 YNWR-QNBJ-2020-049)
详细信息
    作者简介:

    廖俊智(1998−),男,江西九江人,硕士生,主要从事混凝土结构动力分析研究(E-mail: junzhiliao@foxmail.com)

    陈建飞(1963−),男,浙江温州人,教授,博士,主要从事FRP在土木工程中的应用研究(E-mail: Chenjf3@sustech.edu.cn)

    陆 勇(1962−),男,江苏南京人,教授,博士,主要从事冲击振动与结构抗爆应用研究(E-mail: yong.lu@ed.ac.uk)

    陈前均(1993−),男,四川阆中人,博士生,主要从事结构工程、盐岩力学与工程应用研究(E-mail: chen_qianjun@qq.com)

    通讯作者:

    李晓琴(1983−),女,云南丽江人,教授,博士,主要从事FRP加固混凝土结构抗爆炸和冲击研究(E-mail: Xiaoqin.Li@foxmail.com)

  • 中图分类号: TU528.1

NUMERICAL ANALYSIS ON DYNAMIC MECHANICAL BEHAVIOR OF CONCRETE

  • 摘要:

    混凝土动态强度的增强效应DIF(dynamic increase factor)一般由混凝土霍普金森杆SHPB(split Hopkinson pressure bar)试验进行测量,而基于不同应变率˙ε条件下的试块尺度的SHPB试验结果得到的宏观DIF-˙ε关系不能直接应用于数值模型定义。运用ANSYS /LS-DYNA有限元软件和K&C混凝土模型,对混凝土SHPB直接拉伸、劈裂和层裂试验进行了模拟研究。提出了局部和非局部损伤模型中引入网格和应变率˙ε双修正的DIF-˙ε模拟方案,并对混凝土非局部损伤模型中非局部特征长度L在数值模拟中的应用方案进行了讨论。SHPB和混凝土梁冲击试验模拟研究和试验数据的比较结果均表明,提出的分别基于局部和非局部损伤混凝土模型的双修正DIF-˙ε模拟方案能够较为准确描述混凝土动态力学行为。

    Abstract:

    The dynamic increasing factor (DIF) of concrete is normally measured via split Hopkinson pressure bar (SHPB) tests. However, the tested macro-scale DIF-˙εrelationship from the specific SHPB test specimens under different strain rates ˙εcannot be directly introduced to finite element (FE) modelling. Based on the ANSYS/LS-DYNA and K&C concrete damage model, the SHPB direct tension, split and spalling tests were modelled, and a modified DIF-˙εrelationship with both mesh and ˙ε corrections for dynamic mechanic behaviour of concrete material was proposed for local and non-local damage modelling of concrete respectively, also the numerical application of the nonlocal characteristic length L was detailed discussed. The comparison between the SHPB/impact test modelling and the relevant test results indicated that the proposed doubly corrected DIF-˙ε numerical application schemes could properly capture the concrete dynamic mechanical property.

  • 图  1   非局部损伤模型中的特征长度L[26]

    Figure  1.   Characteristic lengthLin nonlocal damage model [26]

    图  2   现有动态抗拉试验数据与宏观抗拉DIF-˙ε经验公式[3]

    Figure  2.   Existing dynamic tensile test results and the empirical tensile DIF-˙ε curve [3]

    图  3   SHPB试验设置

    Figure  3.   SHPB test arrangements

    图  4   基于不同DIF-˙ε关系的透射应力波模拟结果与试验数据的对比(网格尺寸1.5875 mm,入射应力峰值67 MPa)

    Figure  4.   Comparison of computed transmitted stress waves using different DIF-˙εformula options with the test data (Mesh size 1.5875 mm, Incident impulse peak value 67 MPa)

    图  5   不同网格下基于双修正DIF-˙ε曲线的模拟透射应力波与试验结果对比(入射应力峰值67 MPa)

    Figure  5.   Comparison of transmitted stress waves with different mesh sizes and doubly-corrected DIF-˙ε formula with the test data (Incident impulse peak value 67 MPa)

    图  6   SHPB 劈裂试验结果[12, 38] 、模拟结果和式(12)曲线比较

    Figure  6.   The comparison of SHPB FE modelling results, splitting test results [12, 38] and calculated curve based on Equation (12)

    图  7   SHPB层裂试验结果[10, 39]、模拟结果和式(12)曲线比较

    Figure  7.   The comparison of SHPB spalling test results [10, 39], FE modelling results and calculated curves based on Equation (12)

    图  8   不同fc˙ε下SHPB模拟结果与式(12)对比

    Figure  8.   SHPB FE modelling results compared with the calculated results from Equation (12) under different fc and ˙ε

    图  9   不同网格尺寸hc下不同L的非局部损伤模型透射波模拟结果和试验结果比较

    Figure  9.   Transmitted stress waves with different characteristic lengthLunder different mesh sizes hc based on nonlocal damage model compared with the test data

    图  10   不同网格尺寸hc下同一L的非局部损伤模型透射波模拟结果与试验结果比较(L= 6.735 mm)

    Figure  10.   Transmitted stress waves with different mesh sizes hc based on nonlocal damage model compared with the test data (L=6.735 mm)

    图  11   引入不同局部与非局部DIF-˙ε关系的透射波模拟结果与试验结果比较(L= 6.735 mm, hc=1.5875 mm)

    Figure  11.   Transmitted stress waves with different DIF-˙ε relationships based on local or nonlocal damage model compared with the test data (L= 6.735 mm, hc=1.5875 mm)

    图  12   冲击试验装置 /mm

    Figure  12.   Impact test arrangement

    图  13   冲击试验模拟结果与试验结果

    Figure  13.   The modelling and test result comparison of the impact test

    表  1   加载条件

    Table  1   Loading conditions

    加载
    条件
    入射杆
    应力/MPa
    入射波耗时/μs透射杆
    应力/MPa
    动态抗压
    强度/MPa
    应变率/
    s−1
    动力增强
    因子 DIF
    上升峰值
    持续
    总耗时
    126.5451001904.59.314.92.06
    267.0451001904.07.595.31.68
    375.0351001704.17.935.81.75
    下载: 导出CSV

    表  2   有限元模型尺寸及参数

    Table  2   Dimensions and parameters of finite element (FE) model

    名称长度/m直径/m弹性模量/GPa密度/(kg/m3)泊松比
    入射杆1.32080.0508 200.0078000.3
    透射杆1.32080.0508200.0078000.3
    试样0.05080.050837.9324050.2
    下载: 导出CSV

    表  3   K&C混凝土模型参数(fc=57.7 MPa, hc=3.175 mm)

    Table  3   K&C concrete model parameters (fc=57.7 MPa, hc=3.175 mm)

    参数取值参数取值参数取值参数取值参数取值
    a0y 1.288×107 λ1 0.000 λ9 5.200×104 η4 0.99 η12 0.00
    a1y 0.625 λ2 8.000×106 λ10 5.700×104 η5 1.00 η13 0.00
    a2y 4.463×109 λ3 2.400×105 λ11 1.000 η6 0.99 b1 1.6
    a0 1.706×107 λ4 4.000×105 λ12 1.000 η7 0.97 b2 −0.5
    a1 4.463×101 λ5 5.600×105 λ13 1.000 η8 0.50 fc 57.7 MPa
    a2 1.400×109 λ6 7.200×105 η1 0.00 η9 0.10 ft 4.53 MPa
    a1f 4.417×101 λ7 8.800×105 η2 0.85 η10 0.00 Locwidth 3.175 mm
    a2f 2.050×109 λ8 3.200×104 η3 0.97 η11 0.00 ω 0.5
    注:a0y为初始屈服面内聚力,a1ya2y为初始屈服面参数;a0a1a2为最大剪切破坏面参数;a1fa2f为残余破坏面参数;λ1~λ13为第1至第13个损伤函数参数;η1~η13为第1至第13个比例因子;Locwidth为混凝土断裂带局部宽度;fcft分别为混凝土圆柱体准静态单轴抗压和抗拉强度;ω为混凝土剪切膨胀系数;b1为抗压损伤比例参数;b2为拉伸损伤比例指数。
    下载: 导出CSV
  • [1]

    GUO Y B, GAO G F, JING L, et al. Quasi-static and dynamic splitting of high-strength concretes–tensile stress–strain response and effects of strain rate [J]. International Journal of Impact Engineering, 2019, 125: 188 − 211. doi: 10.1016/j.ijimpeng.2018.11.012

    [2]

    LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343 − 360. doi: 10.1016/S0020-7683(02)00526-7

    [3]

    MALVAR L J, CRAWFORD J E. Dynamic increase factors for concrete [R]. Orlando: Naval Facilities Engineering Service Center, 1998.

    [4]

    LU Y, SONG Z H, TU Z G. Analysis of dynamic response of concrete using a mesoscale model incorporating 3D effects [J]. International Journal of Protective Structures, 2010, 1(2): 197 − 217. doi: 10.1260/2041-4196.1.2.197

    [5]

    ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: Experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327 − 1334. doi: 10.1016/j.ijimpeng.2009.04.009

    [6]

    LI X Q, CHEN Q J, CHEN J F, et al. Dynamic increase factor (DIF) for concrete in compression and tension in FE modelling with a local concrete model [J]. International Journal of Impact Engineering, 2022, 163: 104079. doi: 10.1016/j.ijimpeng.2021.104079

    [7]

    FIB model code for concrete structures 2010 [S]. Lausanne, Switzerland: International Federation for Structural Concrete, 2013: 100 − 101.

    [8]

    LU Y B, LI Q M. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact Engineering, 2011, 38(4): 171 − 180. doi: 10.1016/j.ijimpeng.2010.10.028

    [9]

    BRARA A, KLEPACZKO J R. Experimental characterization of concrete in dynamic tension [J]. Mechanics of Materials, 2006, 38(3): 253 − 267. doi: 10.1016/j.mechmat.2005.06.004

    [10]

    WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of concrete [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 605 − 617.

    [11]

    TEDESCO J W, ROSS C A, MCGILL P B, et al. Numerical analysis of high strain rate concrete direct tension tests [J]. Computers & Structures, 1991, 40(2): 313 − 327.

    [12]

    TEDESCO J W, ROSS C A. Strain-rate-dependent constitutive equations for concrete [J]. Journal of Pressure Vessel Technology, 1998, 120(4): 398 − 405. doi: 10.1115/1.2842350

    [13]

    SCHULER H, MAYRHOFER C, THOMA K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates [J]. International Journal of Impact Engineering, 2006, 32(10): 1635 − 1650. doi: 10.1016/j.ijimpeng.2005.01.010

    [14]

    AL-SALLOUM Y, ALMUSALLAM T, IBRAHIM S M, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments [J]. Cement and Concrete Composites, 2015, 55: 34 − 44. doi: 10.1016/j.cemconcomp.2014.07.011

    [15]

    ERZAR B, FORQUIN P. An experimental method to determine the tensile strength of concrete at high rates of strain [J]. Experimental Mechanics, 2010, 50(7): 941 − 955. doi: 10.1007/s11340-009-9284-z

    [16]

    TEDESCO J W, ROSS C A, BRUNAIR R M. Numerical analysis of dynamic split cylinder tests [J]. Computers & Structures, 1989, 32(3/4): 609 − 624.

    [17] 孟龙, 黄瑞源, 蒋东, 等. 不同强度混凝土高温下动态劈拉性能研究[J]. 工程力学, 2021, 38(3): 202 − 213. doi: 10.6052/j.issn.1000-4750.2020.05.0310

    MENG Long, HUANG Ruiyuan, JIANG Dong, et al. Research on dynamic splitting-tensile properties of concretes with different strength at high temperature [J]. Engineering Mechanics, 2021, 38(3): 202 − 213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0310

    [18] 俞鑫炉, 付应乾, 董新龙, 等. 轴向钢筋增强混凝土一维应力层裂实验研究[J]. 工程力学, 2020, 37(1): 80 − 87. doi: 10.6052/j.issn.1000-4750.2019.01.0026

    YU Xinlu, FU Yingqian, DONG Xinlong, et al. Experimental study on one-dimensional stress spall of unidirectional reinforced concrete [J]. Engineering Mechanics, 2020, 37(1): 80 − 87. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0026

    [19]

    BAŽANT Z P, OH B H. Crack band theory for fracture of concrete [J]. Matériaux et Construction, 1983, 16(3): 155 − 177.

    [20]

    ROTS J G, NAUTA P, KUSTER G M A, et al. Smeared crack approach and fracture localization in concrete [J]. HERON, 1985, 30(1): 1 − 48.

    [21]

    KONG X Z, FANG Q, HONG J. A new damage-based nonlocal model for dynamic tensile failure of concrete material [J]. International Journal of Impact Engineering, 2019, 132: 103336. doi: 10.1016/j.ijimpeng.2019.103336

    [22]

    PIJAUDIER-CABOT G, BAŽANT Z P. Nonlocal damage theory [J]. Journal of Engineering Mechanics, 1987, 113(10): 1512 − 1533. doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)

    [23]

    Malvar L J, Crawford J E, Morrill K B. K&C concrete material model release III-automated generation of material model input[R]. Glendale: Karagozian and Case Structural Engineers, 2000: 1 − 17.

    [24] 李晓琴, 陈建飞, 陆勇. K&C局部损伤混凝土材料模型在精细有限元模拟中的应用[J]. 云南大学学报(自然科学版), 2015, 37(4): 541 − 547.

    LI Xiaoqin, CHEN Jianfei, LU Yong. Numerical applications of K&C concrete damage model in meso-scale finite element modelling [J]. Journal of Yunnan University (Natural Sciences Edition), 2015, 37(4): 541 − 547. (in Chinese)

    [25]

    LI X Q, CHEN J F, LU Y. Meso-scale modelling of FRP-to-concrete bond behaviour using LSDYNA [M]// YE L P, FENG P, YUE Q R. Advances in FRP Composites in Civil Engineering. Berlin: Springer, 2011: 494 − 498.

    [26]

    LS-DYNA keyword User's manual version 971:Volume II Material Models [M]. California, U.S: Livermore Software Technology Corporation (LSTC), 2013: 38 − 41.

    [27]

    KONG X Z, QIN F, LI C, et al. Nonlocal formulation of the modified K&C model to resolve mesh-size dependency of concrete structures subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 122: 318 − 332. doi: 10.1016/j.ijimpeng.2018.09.007

    [28] 滕骁, 卢玉斌, 陈兴, 等. 再生混凝土动态直接拉伸的试验研究[J]. 振动与冲击, 2016, 35(9): 43 − 51. doi: 10.13465/j.cnki.jvs.2016.09.008

    TENG Xiao, LU Yubin, CHEN Xing, et al. Tests for dynamic direct tensile of recycled aggregate concrete [J]. Journal of Vibration and Shock, 2016, 35(9): 43 − 51. (in Chinese) doi: 10.13465/j.cnki.jvs.2016.09.008

    [29] 吴胜兴, 王瑶, 周继凯, 等. 水泥砂浆动态轴向拉伸本构关系试验研究[J]. 土木工程学报, 2012, 45(1): 13 − 22.

    WU Shengxing, WANG Yao, ZHOU Jikai, et al. Experimental study of dynamic axial tensile constitutive relationship for mortar [J]. China Civil Engineering Journal, 2012, 45(1): 13 − 22. (in Chinese)

    [30] 肖诗云, 田子坤. 混凝土单轴动态受拉损伤试验研究[J]. 土木工程学报, 2008, 41(7): 14 − 20. doi: 10.3321/j.issn:1000-131X.2008.07.003

    XIAO Shiyun, TIAN Zikun. Experimental study on the uniaxial dynamic tensile damage of concrete [J]. China Civil Engineering Journal, 2008, 41(7): 14 − 20. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.07.003

    [31]

    ANTOUN T H. Constitutive/failure model for the static and dynamic behaviors of concrete incorporating effects of damage and anisotropy [D]. Dayton: The University of Dayton, 1991.

    [32]

    BIRKIMER D L, LINDEMANN R. Dynamic tensile strength of concrete materials [J]. Journal Proceedings, 1971, 68(1): 47 − 49.

    [33]

    COWELL W L. Dynamic properties of plain portland cement concrete [R]. Port Hueneme: Naval Civil Engineering Lab, 1966.

    [34]

    JOHN R, ANTOUN T, RAJENDRAN A M. Effect of strain rate and size on tensile strength of concrete [M]// SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter–1991. Amsterdam: Elsevier, 1992: 501 − 504.

    [35]

    MCVAY M K. Spall damage of concrete structures [R]. Vicksburg: U.S. Army Corps of Engineers, Waterways Experiment Station, 1988: 95 − 100.

    [36]

    MELLINGER F M, BIRKIMER D L. Measurements of stress and strain on cylindrical test specimens of rock and concrete under impact loading [R]. Cincinnati: U.S. Army Corps of Engineers, Ohio River Division Laboratories, 1966: 6 − 8.

    [37]

    TEDESCO J W, HUGHES M L, ROSS C A. Numerical simulation of high strain rate concrete compression tests [J]. Computers & Structures, 1994, 51(1): 65 − 77.

    [38]

    ROSS C A. Split-Hopkinson pressure bar tests [R]. Florida: Air Force Engineering and Services Center Tyndall AFB FL Engineering and Services Lab, 1989: 38 − 53.

    [39]

    KLEPACZKO J R, BRARA A. An experimental method for dynamic tensile testing of concrete by spalling [J]. International Journal of Impact Engineering, 2001, 25(4): 387 − 409. doi: 10.1016/S0734-743X(00)00050-6

    [40]

    Richard J. Wasley. Stress wave propagation in solids [M]. New York: M. Dekker, 1973.

    [41]

    DU J, YON J H, HAWKINS N, et al. Fracture process zone for concrete for dynamic loading [J]. Materials Journal, 1992, 89(3): 252 − 258.

图(13)  /  表(3)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  98
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2023-01-27
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回