动水力简化计算方法对圆形桥墩传递函数的影响

郭婕, 赵密, 王丕光, 杜修力

郭婕, 赵密, 王丕光, 杜修力. 动水力简化计算方法对圆形桥墩传递函数的影响[J]. 工程力学, 2020, 37(2): 50-61. DOI: 10.6052/j.issn.1000-4750.2019.01.0003
引用本文: 郭婕, 赵密, 王丕光, 杜修力. 动水力简化计算方法对圆形桥墩传递函数的影响[J]. 工程力学, 2020, 37(2): 50-61. DOI: 10.6052/j.issn.1000-4750.2019.01.0003
GUO Jie, ZHAO Mi, WANG Pi-guang, DU Xiu-li. EFFECTS OF SIMPLIFIED METHODS FOR HYDRODYNAMIC FORCE ON TRANSFER FUNCTION OF CIRCULAR PIER[J]. Engineering Mechanics, 2020, 37(2): 50-61. DOI: 10.6052/j.issn.1000-4750.2019.01.0003
Citation: GUO Jie, ZHAO Mi, WANG Pi-guang, DU Xiu-li. EFFECTS OF SIMPLIFIED METHODS FOR HYDRODYNAMIC FORCE ON TRANSFER FUNCTION OF CIRCULAR PIER[J]. Engineering Mechanics, 2020, 37(2): 50-61. DOI: 10.6052/j.issn.1000-4750.2019.01.0003

动水力简化计算方法对圆形桥墩传递函数的影响

基金项目: 国家自然科学基金项目(51421005,51678015)
详细信息
    作者简介:

    郭婕(1990-),女,四川人,博士生,主要从事水-结构动力相互作用研究(E-mail:guojie14@bjut..edu.cn);赵密(1980-),男,吉林人,教授,博士,博导,主要从事重大工程抗震领域的研究(E-mail:zhaomi@bjut.edu.cn);王丕光(1985-),男,山东人,助理研究员,博士,主要从事桥梁结构抗震领域的研究(E-mail:wangpiguang1985@126.com).

    通讯作者:

    杜修力(1962-),男,四川人,长江学者特聘教授,博士,博导,主要从事地震工程领域的研究(E-mail:duxiuli@bjut.edu.cn).

  • 中图分类号: U442.55

EFFECTS OF SIMPLIFIED METHODS FOR HYDRODYNAMIC FORCE ON TRANSFER FUNCTION OF CIRCULAR PIER

  • 摘要: 刚性柱法、莫里森法和基频近似法是可供工程应用的不可压缩无粘性水体地震动水力的简化计算方法。为研究上述方法的差异性,将基于不可压缩无粘性水体辐射理论推导的考虑结构变形的精确解作为标准,从频域传递函数的角度,对各简化方法进行比较分析。以水中悬臂圆柱墩为例,选取2个尺寸参数并设计了84种不同尺寸的桥墩,输入脉冲激励得到墩顶节点的位移传递函数、墩底节点的剪力和弯矩传递函数,提取各传递函数的前两阶共振峰幅值和共振频率,基于标准解结果求得3种简化方法的误差。通过分析误差的范围及变化趋势,发现刚性柱法所得共振峰幅值更精确,基频近似法所得共振周期更精确,莫里森法误差受参数的影响显著。此外,基频近似法所得共振峰幅值大多偏小,而莫里森法所得幅值和周期大多偏大。
    Abstract: The rigid-structure method, Morison method and a method based on approximation of fundamental frequency are applicable simplified methods for the hydrodynamic force of incompressible non-viscous water. To investigate the differences of the above methods, the responsesof elastic cantilever circular piers were compared in the form of frequency domain transfer function, with the exact solutions which based on the radiation theory of incompressible non-viscous water considering structural deformation. Two kinds of size parameters were selected and 84 different sizes of piers were designed. By inputting impulse excitation, the transfer functions of displacement at the bottom, the transfer function of shear force and bending moment at the top were obtained. Then the first two order resonance-peak amplitude and resonance frequency were extracted for error analysis. Through the analysis of the range and variation trend of errors, it is found that:the resonance peak amplitude obtained by the rigid-structure method is more accurate, the resonance period obtained by the method based on approximation of fundamental-frequency is more accurate, and the error of the Morison method is significantly affected by the parameters. In addition, the amplitude of formant obtained by the fundamental frequency approximation is mostly smaller, while the amplitude and period obtained by the Morrison method are mostly larger.
  • [1] Westergaard H M. Water pressures on dams during earthquakes[J]. Transactions. ASCE, 1933, 98(1):418-433.
    [2] Jacobsen L S. Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindrical pier[J]. Bulletin of the Seismological Society of America, 1949, 39(3):189-204.
    [3] Liu C G, Sun G S. Calculation and experiment for dynamic response of bridge in deep water under seismic excitation[J]. China Ocean Engineering, 2014, 28(4):445-456.
    [4] Deng Y L, Guo Q K, Xu L Q. Experimental and numerical study on modal dynamic response of water-surrounded slender bridge pier with pile foundation[J]. Shock and Vibration, 2017:1-20.
    [5] Wang X D, Bathe K J. Displacement pressure based mixed finite element formulations for acoustic fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering, 1997, 40(11):2001-2017.
    [6] 杜修力, 王进廷. 动水压力及其对坝体地震反应影响的研究进展[J]. 水利学报, 2001, 3(7):13-21. Du Xiuli, Wang Jingting. Review of studies on the hydrodynamic pressure and its effects on the seismic response of dams[J]. Journal of Hydraulic Engineering, 2001, 3(7):13-21. (in Chinese)
    [7] Xu H, Zou D G, Kong X J, et al. Study on the effects of hydrodynamic pressure on the dynamic stresses in slabs of high CFRD based on the scaled boundary finite-element method[J]. Soil Dynamics and Earthquake Engineering, 2016, 88:223-236.
    [8] Løkke A, Chopra A K. Direct finite element method for nonlinear analysis of semi-unbounded dam-waterfoundation rock systems[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(8):1267-1285.
    [9] 赖伟, 王君杰, 胡世德. 地震下桥墩动水压力分析[J]. 同济大学学报(自然科学版), 2004, 32(1):1-5. Lai Wei, Wang Junjie, Hu Shide. Earthquake induced hydrodynamic pressure on bridge pier[J]. Journal of Tongji University(Natural Science), 2004, 32(1):1-5. (in Chinese)
    [10] 黄信, 李忠献. 动水压力作用对深水桥墩地震响应的影响[J]. 土木工程学报, 2011, 44(1):65-73. Huang Xin, Li Zhongxian. Influence of hydrodynamic pressure on seismic response of bridge piers in deepwater[J]. China Civil Engineering Journal, 2011, 44(1):65-73. (in Chinese)
    [11] Du X L, Wang P G, Zhao M. Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain[J]. Ocean Engineering, 2014, 85:44-53.
    [12] Wang P G, Zhao M, Li H F, et al. An accurate and efficient time-domain model for simulating water-cylinder dynamic interaction during earthquakes[J]. Engineering Structures, 2018, 166:263-273.
    [13] Liaw C Y, Chopra A K. Dynamics of towers surrounded by water[J]. Earthquake Engineering & Structural Dynamics, 1974, 3(1):33-49.
    [14] Tanaka Y, Hudspeth R T. Restoring forces on vertical circular cylinders forced by earthquakes[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(1):99-119.
    [15] 黄信, 李忠献. 自由表面波和水体压缩性对深水桥墩地震动水压力的影响[J]. 天津大学学报, 2011, 44(4):319-323. Huang Xin, Li Zhongxian. Influence of free surface wave and water compressibility on earthquake induced hydrodynamic pressure of bridge pier in deep water[J]. Journal of Tianjin University, 2011, 44(4):319-323. (in Chinese)
    [16] Maheri M R, Severn R T. Experimental added-mass in modal vibration of cylindrical structures[J]. Engineering Structures, 1992, 14(3):163-175.
    [17] Li Q, Yang W L. An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake[J]. Ocean Engineering, 2013, 72:241-256.
    [18] Jiang H, Wang B X, Bai X Y, et al. Simplified expression of hydrodynamic pressure on deepwater cylindrical bridge piers during earthquakes[J]. Journal of Bridge Engineering, 2017, 22(6):04017017-1-04017014-19.
    [19] Wang P G, Zhao M, Du X L, et al. Simplified evaluation of earthquake-induced hydrodynamic pressure on circular tapered cylinders surrounded by water[J]. Ocean Engineering, 2018, 164:105-113.
    [20] Han R P S, Xu H Z. A simple and accurate added mass model for hydrodynamic fluid-structure interaction analysis[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 1996, 333B(6):929-945.
    [21] Yang W L, Li Q. A new added mass method for fluid-structure interaction analysis of deep-water bridge[J]. KSCE Journal of Civil Engineering, 2013, 17(6):1413-1424.
    [22] Morison J R, Johnson J W, Schaaf S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5):149-154.
    [23] Penzien J, Kaul M K. Response of offshore towers to strong motion earthquake[J]. Earthquake Engineering & Structural Dynamics, 1972, 1(1):55-68.
    [24] 冼巧玲, 冯俊迎, 周福霖. 水深对桥梁地震反应的影响分析[J]. 地震工程与工程振动, 2014, 34(1):81-86. Xian Qiaoling, Feng Junying, Zhou Fulin. The influence of water depth on the seismic response of bridge[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(1):81-86. (in Chinese)
    [25] Yang W L, Li Q. The expanded Morison equation considering inner and outer water hydrodynamic pressure of hollow piers[J]. Ocean Engineering, 2013, 69:79-87.
    [26] Li Y, Li Z, Wu Q Q. Experiment and calculation method of the dynamic response of deep water bridge in earthquake[J]. Latin American Journal of Solids and Structures, 2017, 14(13):2518-2533.
    [27] 杜修力, 郭婕, 赵密, 等. 动水力简化计算方法对圆形桥墩地震反应的影响[J]. 北京工业大学学报, 2019, 45(6):37-46. Du Xiuli, Guo Jie, Zhao Mi, et al. Effects of simplified methods for hydrodynamic force on seismic responses of circular pier[J]. Journal of Beijing University of Technology, 2019, 45(6):37-46. (in Chinese)
    [28] 于亮亮, 宋汉文. 环境激励下脉冲响应函数与相关函数的关系[J]. 噪声与振动控制, 2017, 37(3):14-18, 36. Yu Liangliang, Song Hanwen. Discussion on the relation between correlation functions and impulse response functions under ambient excitation[J]. Noise and Vibration Control, 2017, 37(3):14-18, 36. (in Chinese)
    [29] Goyal A, Chopra A K. Hydrodynamic and foundation interaction effects in dynamics of intake towers:Frequency response functions[J]. Journal of Structural Engineering, 1989, 115(6):1371-1385.
    [30] 袁迎春, 赖伟, 王君杰, 等. Morison方程中动水阻力项对桥梁桩柱地震反应的影响[J]. 世界地震工程, 2005, 21(4):88-94. Yuan Yingchun, Lai Wei, Wang Junjie, et al. The effects of hydrodynamic damping on seismic response of bridge piles[J]. Word Earthquake Engineering, 2005, 21(4):88-94. (in Chinese)
    [31] GB 50010-2010, 混凝土结构设计规范(2015版)[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures (2015 edition)[S]. Beijing:China Building Materials Press, 2010. (in Chinese)
  • 期刊类型引用(4)

    1. 王朝振,刘银涛,孙建鹏,周鹏,孙文武,张家驹. 微分法在有限元分析中的应用. 城市道桥与防洪. 2021(01): 172-175+18-19 . 百度学术
    2. 赵云,丁敏,韩盛柏,曹琼琼,蒋秀根. 考虑压-弯-扭耦合作用的开口截面杆件非线性静力模型. 中国农业大学学报. 2021(03): 115-123 . 百度学术
    3. 丁敏,石家华,王斌泰,王宏志,邓婷,罗双,蒋秀根. 解析型几何非线性圆拱单元. 工程力学. 2021(07): 1-8+29 . 本站查看
    4. 罗爱玲,景运革. 有限元法在扭转杆计算中的应用. 机电工程技术. 2021(11): 125-128 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  418
  • HTML全文浏览量:  58
  • PDF下载量:  99
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-06-20
  • 刊出日期:  2020-05-26

目录

    /

    返回文章
    返回