考虑大位移影响的解析型压扭杆单元

许晶, 夏文忠, 王宏志, 蒋秀根

许晶, 夏文忠, 王宏志, 蒋秀根. 考虑大位移影响的解析型压扭杆单元[J]. 工程力学, 2019, 36(4): 44-51. DOI: 10.6052/j.issn.1000-4750.2018.03.0116
引用本文: 许晶, 夏文忠, 王宏志, 蒋秀根. 考虑大位移影响的解析型压扭杆单元[J]. 工程力学, 2019, 36(4): 44-51. DOI: 10.6052/j.issn.1000-4750.2018.03.0116
XU Jing, XIA Wen-zhong, WANG Hong-zhi, JIANG Xiu-gen. ANALYTICAL ELEMENT FOR BAR SUBJECTED TO COMPRESSION AND TORSION CONSIDERING THE LARGE DISPLACEMENT[J]. Engineering Mechanics, 2019, 36(4): 44-51. DOI: 10.6052/j.issn.1000-4750.2018.03.0116
Citation: XU Jing, XIA Wen-zhong, WANG Hong-zhi, JIANG Xiu-gen. ANALYTICAL ELEMENT FOR BAR SUBJECTED TO COMPRESSION AND TORSION CONSIDERING THE LARGE DISPLACEMENT[J]. Engineering Mechanics, 2019, 36(4): 44-51. DOI: 10.6052/j.issn.1000-4750.2018.03.0116

考虑大位移影响的解析型压扭杆单元

基金项目: 国家自然科学基金项目(51279206);农业部农业设施结构工程重点实验室开放课题(201502);中央高校基本科研业务费专项资金项目(2015SY004)
详细信息
    作者简介:

    许晶(1985-),女,河北人,讲师,博士,主要从事结构工程方面的研究(E-mail:xujing@cau.edu.cn);夏文忠(1992-),男,浙江人,硕士,主要从事结构工程方面的研究(E-mail:xwz7298@163.com);王宏志(1967-),男,江西人,副教授,博士,主要从事计算力学方面的研究(E-mail:climber@cau.edu.cn).

    通讯作者:

    蒋秀根(1966-),男,江苏人,教授,硕士,主要从事结构工程方面的研究(E-mail:jiangxg@cau.edu.cn).

  • 中图分类号: TB125

ANALYTICAL ELEMENT FOR BAR SUBJECTED TO COMPRESSION AND TORSION CONSIDERING THE LARGE DISPLACEMENT

  • 摘要: 为提高压扭杆件内力和变形分析的精度和效率,以Vlasov扭转理论为基础,根据压扭杆件位移控制方程,考虑大位移和截面翘曲影响,构建了压扭杆的单元位移形函数,采用势能原理建立了压扭杆势能泛函。利用势能驻值变分原理得出了解析型压扭杆单元列式,并推导了用于杆件内力分析的单元刚度矩阵。将其与理论解、插值多项式单元进行对比,结果表明:该文构造的单元计算压扭杆转角及翘曲率和临界荷载的精度高于插值多项式单元,且不需划分单元,即可保证计算结果与理论解一致,满足了高精度、高效率的要求,可应用于解决实际工程问题。
    Abstract: To improve the accuracy and efficiency in calculating the inter force and deformation of bar under compression and torsion, the shape function was determined by considering the section warping and the effect of large displacement, based on Vlasov restrained torsion theory and according to the displacement controlling equation for bar. Potential energy functional of bar subjected to compression and torsion was established by applying potential energy principle. Analytical element formulations for bar were received and element stiffness matrix was obtained via variational principle of potential energy stationary value. Comparisons among the calculation results of proposed element, theoretical solution, and interpolation polynomial element are conducted, and the results show that the solution of analytical element by one element number is in accordance with the theoretical solution. The analytical element can satisfy the high accuracy and efficiency requirement and can be applied in practice.
  • [1] 韩林海. 钢管混凝土压扭构件工作机理研究[J]. 哈尔滨建筑工程学院学报, 1994, 27(4):35-40. Han Linhai. Study on the behavior mechanism of concrete filled steel tubular (CFST) member subjected to compression and torsion[J]. Journal of Harbin Architecture & Civil Engineering Institute, 1994, 27(4):35-40. (in Chinese)
    [2] 王国周, 瞿履谦. 钢结构:原理与设计[M]. 北京:清华大学出版社, 1992. Wang Guozhou, Qu Lüqian. Steel structure-principle and design[M]. Beijing:Tsinghua University Press, 1992. (in Chinese)
    [3] 黄宏, 郭晓宇, 陈梦成. 圆中空夹层钢管混凝土压扭构件有限元分析[J]. 建筑结构学报, 2013, 34(增刊1):50-56. Huang Hong, Guo Xiaoyu, Chen Mengcheng. Theoretical research on concrete filled double-skin steel tubular members subjected to compression and torsion[J]. Journal of Building Structures, 2013, 34(Suppl 1):50-56. (in Chinese)
    [4] 童根树. 钢结构的平面外稳定[M]. 北京:中国建筑工业出版社, 2013. Tong Genshu. The out-plane stability of steel[M]. Beijng:China Architecture & Building Press, 2013. (in Chinese)
    [5] Cheung Y K, Zienkiewicz O C. Plates and tanks on elastic foundation:an application of finite element method[J]. International Journal of Solids & Structures, 1965, 1(4):451-461.
    [6] Timoshenko S P, Gere J M. Theory of elastic stability[M]. NewYork:McGraw-Hill, 1961.
    [7] Vlasov V Z. Thin-walled elastic beams (Second edition)[M]. Jerusalem:Israel Program for Scientific Translation, 1961.
    [8] 包世华, 周坚. 薄壁杆件结构力学[M]. 北京:中国建筑工业出版社, 1991. Bao Shihua, Zhou Jian. Structural mechanics of thin walled bar[M]. Beijing:China Building Industry Press, 1991. (in Chinese)
    [9] 李华煜, 辛克贵. 采用分段样条插值的半离散方法分析薄壁杆件[J]. 工程力学, 1992, 9(3):8-22. Li Huayu, Xin Kegui. Analysis of thin-walled members by a semi-discrete method using sectional spline function[J]. Engineering Mechanics, 1992, 9(3):8-22. (in Chinese)
    [10] 杨隆宇, 李正良. 双角钢十字组合截面构件铰支轴心受压承载力研究[J]. 西南交通大学学报, 2011, 46(5):754-759. Yang Longyu, Li Zhengliang. Bearing capacity of pinned-end built-up cruciform section members formed by two equal-leg angles under compression load[J]. Journal of Southwest Jiaotong University, 2011, 46(5):754-759. (in Chinese)
    [11] 秦剑, 万建成, 夏拥军, 等. 轴心受压开口薄壁构件弹塑性屈曲荷载的统一计算方法[J]. 建筑结构学报, 2017, 38(5):18-23. Qin Jian, Wan Jiancheng, Xia Yongjun, et al. Integrated calculation method for elasto-plastic buckling load of thin-walled axial compression member with open cross-section[J]. Journal of Building Structures, 2017, 38(5):18-23. (in Chinese)
    [12] Yuan Z, Huo S H, Geng X L. Stability of perfect and imperfect cylindrical shells under axial compression and torsion[J]. Journal of Central South University, 2014, 21(4):1264-1274.
    [13] Rasmussen K J R, Hancock G J. Tests of high strength steel columns[J]. Journal of Constructional Steel Research, 1995, 34(1):27-52.
    [14] 聂诗东, 戴国欣, 沈乐, 等. Q345GJ钢(中)厚板H形及箱形柱残余应力与轴压稳定承载力分析[J]. 工程力学, 2017, 34(12):171-182. Nie Shidong, Dai Guoxin, Shen Le, et al. Residual stress distribution and overall stability load-carrying capacitie of H-shaped and box section columns welded by Q345GJ structural steel plates under axial compression[J]. Engineering Mechanics, 2017, 34(12):171-182. (in Chinese)
    [15] 李国强, 王彦博, 陈素文, 等. 高强钢焊接箱形柱轴心受压极限承载力试验研究[J]. 建筑结构学报, 2012, 33(3):8-14. Li Guoqiang, Wang Yanbo, Chen Suwen, et al. Experimental study on ultimate bearing capacity of axially compressed high strength steel columns[J]. Journal of Building Structures, 2012, 33(3):8-14. (in Chinese)
    [16] Hsu H L, Liang L L. Performance of hollow composite members subjected to cyclic eccentric loading[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(3):443-461.
    [17] Hsu H L, Hsieh J C. Seismic performance of steel-encased composite members with strengthening cross-inclined bars[J]. Journal of Constructional Steel Research, 2004, 60(3):1663-1679.
    [18] Liu G R, Dai K Y, Nguyen T T. A smoothed finite element method for mechnics problems[J]. Computational Mechanics, 2007, 39(6):859-877.
    [19] Zienkiewicz O C, Taylor R L. The finite element method[M]. 5th ed. Oxford:Butterworth Heinemann, 2000.
    [20] Johnson C P, Will K M. Beam buckling by finite element procedure[J]. Journal of the Structural Division, ASCE, 1974, 100(ST3):669-685.
    [21] Barsoum R S, Gallagher R H. Finite element analysis of torsional and torsional-flexural stability problems[J]. International Journal for Numerical Methods in Engineering, 1970, 2(3):335-352.
    [22] Wang Q, Li W Y. Buckling of thin-walled compression members with shear lag using spline finite member element method[J]. Computational Mechanics, 1996, 18(2):139-146.
    [23] Liu G R, Nguyen-Xuan H, Nguyen-Thoi T. Avariationally consistent FEM (VC FEM) for solution bounds and nearly exact solution to solid mechanics problems using quadrilateral elements[J]. International Journal for Nmuerical Methods in Engineering, 2011, 85(4):461-497.
    [24] 岑松, 尚闫, 周培蕾, 等. 形状自由的高性能有限元方法研究的一些进展[J]. 工程力学, 2017, 34(3):1-14. Cen Song, Shang Yan, Zhou Peilei, et al. Advances in shape-free finite element methods:a review[J]. Engineering Mechanics, 2017, 34(3):1-14. (in Chinese)
    [25] Cao Qiongqiong, Xu Jing, Cheng Xiaoke, Zhang Qingxia, Zhang Peng, Jiang Xiugen. Element for beam analysis based on parabolic distribution stiffness[C]. International Conference on Architectural Engineering and New Materials, Guangzhou, 2015:131-137.
    [26] Tang Lifeng, Xu Jing, Wang Hongzhi, Chen Xinghua. Accurate element of compressive bar considering the effect of displacement[J]. Mathematical Problems in Engineering, 2015, 2015:1-8.
    [27] 李潇, 王宏志, 李世萍, 等. 解析型Winkler弹性地基梁单元构造[J]. 工程力学, 2015, 32(3):66-72. Li Xiao, Wang Hongzhi, Li Shi ping, et al. Element structure of analytical Winkler elastic foundation beam[J]. Engineering Mechanics, 2015, 32(3):66-72. (in Chinese)
    [28] 李静, 蒋秀根, 王宏志, 等. 解析型弹性地基Timoshenko梁单元[J]. 工程力学, 2018, 35(2):221-229, 248. Li Jing, Jiang Xiugen, Wang Hongzhi, et al. Analytical element for Timoshenko beam on elastic foundation[J]. Engineering Mechanics, 2018, 35(2):221-229, 248. (in Chinese)
    [29] 夏文忠. 基于Vlasov约束扭转理论的扭杆分析单元构造[D]. 北京:中国农业大学, 2017. Xia Wenzhong. Development of constraint torsion elements on torsion bar based on Vlasov theory[D]. Beijing:China Agricultural University, 2017. (in Chinese)
  • 期刊类型引用(4)

    1. 王朝振,刘银涛,孙建鹏,周鹏,孙文武,张家驹. 微分法在有限元分析中的应用. 城市道桥与防洪. 2021(01): 172-175+18-19 . 百度学术
    2. 赵云,丁敏,韩盛柏,曹琼琼,蒋秀根. 考虑压-弯-扭耦合作用的开口截面杆件非线性静力模型. 中国农业大学学报. 2021(03): 115-123 . 百度学术
    3. 丁敏,石家华,王斌泰,王宏志,邓婷,罗双,蒋秀根. 解析型几何非线性圆拱单元. 工程力学. 2021(07): 1-8+29 . 本站查看
    4. 罗爱玲,景运革. 有限元法在扭转杆计算中的应用. 机电工程技术. 2021(11): 125-128 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  385
  • HTML全文浏览量:  40
  • PDF下载量:  66
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-02-28
  • 刊出日期:  2019-04-24

目录

    /

    返回文章
    返回