一种索穹顶结构初始预应力分布确定的新方法—预载回弹法

向新岸, 冯远, 董石麟

向新岸, 冯远, 董石麟. 一种索穹顶结构初始预应力分布确定的新方法—预载回弹法[J]. 工程力学, 2019, 36(2): 45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971
引用本文: 向新岸, 冯远, 董石麟. 一种索穹顶结构初始预应力分布确定的新方法—预载回弹法[J]. 工程力学, 2019, 36(2): 45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971
XIANG Xin-an, FENG Yuan, DONG Shi-lin. A NEW METHOD OF DETERMINING THE INITIAL PRESTRESS DISTRIBUTION OF CABLE DOMES—THE PRELOAD AND REBOUND METHOD[J]. Engineering Mechanics, 2019, 36(2): 45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971
Citation: XIANG Xin-an, FENG Yuan, DONG Shi-lin. A NEW METHOD OF DETERMINING THE INITIAL PRESTRESS DISTRIBUTION OF CABLE DOMES—THE PRELOAD AND REBOUND METHOD[J]. Engineering Mechanics, 2019, 36(2): 45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971

一种索穹顶结构初始预应力分布确定的新方法—预载回弹法

基金项目: 国家重点研发计划项目(2016YFC0701204);国家自然科学基金项目(51678550);中国建筑股份有限公司科研项目(CSCEC-2015-Z-43)
详细信息
    作者简介:

    冯远(1961-),女,四川成都人,教授级高工,全国工程勘察设计大师,学士,总工程师,长期从事大跨空间结构的工程实践及科研工作(E-mail:xnyfy@vip.163.com);董石麟(1932-),男,浙江杭州人,教授,博导,中国工程院院士,长期从事空间结构的科研、教学与工程实践工作.

    通讯作者:

    向新岸(1983-),男,四川成都人,高工,博士,主要从事大跨空间结构的工程实践及科研工作(E-mail:spacexxa@163.com).

  • 中图分类号: TU394;TU318

A NEW METHOD OF DETERMINING THE INITIAL PRESTRESS DISTRIBUTION OF CABLE DOMES—THE PRELOAD AND REBOUND METHOD

  • 摘要: 对索穹顶结构初始预应力分布的确定进行了研究,提出一种新方法—预载回弹法。该方法首先对索穹顶施加一个预设荷载,提取有利于抵抗预设荷载的内力分布。将该组内力作为预应力施加至结构上,并撤除预载,使结构回弹,通过两阶段变弹性模量迭代计算,收敛后可获得索穹顶结构的整体可行预应力分布。该方法通过施加对称荷载,即可自动实现单元的分组,便于整体可行预应力的判定,并可直接获得多自应力模态结构的优化初始预应力分布。通过算例证明预载回弹法具有很高的精度、较快的收敛速度,求得的整体可行预应力分布直接适用于实际工程应用。
    Abstract: The determination of the initial prestress distribution of cable domes is studied and a new method named the Preload and Rebound Method is proposed. A preload is applied to the cable dome first to get the internal force distribution which helps resist the preload. After the preload is removed, the internal force is then applied to the structure as prestress, making the structure rebound. Through the two-stage iterative calculation by using changing elastic modulus, the integrity feasible prestressing distribution of the cable dome is achieved after convergence. By applying a symmetric load, this method automatically groups the members and easily distinguishes the integrity feasible prestressing distribution. The optimized initial prestress distribution of the structure with multi-self-equilibrium stress modes is also directly gained. This method is proved to be accurate and converge fast by several examples. The integrity feasible prestressing distribution obtained through this method can be directly applied to engineering practice.
  • [1] Geiger D H, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korea Olympics[C]//Proceedings of the IASS Symposium:Shells, Membranes and Space Frame. Osaka, 1986, 2:265-272.
    [2] Levy M P. The Georgia dome and beyond achieving lightweight-long span structures[C]//Proceedings of the IASS-ASCE International Symposium:Spatial, Lattice and Tension Structures. New York, 1994:560-562.
    [3] Pellegrino S, Calladine C R. Matrix analysis of statically and kinematically indaterminate frameworks[J]. International Journal of Solids and Structures, 1986, 22(4):409-428.
    [4] Pellegrino S. Structural computations with the singular value decomposition of the equilibrium matrix[J]. International Journal of Solids and Structures, 1993, 30(21):3025-3035.
    [5] 董石麟, 袁行飞. 肋环型索穹顶初始预应力分布的快速计算法[J]. 空间结构, 2003, 9(2):3-8, 19. Dong Shilin, Yuan Xingfei. A quick calculation method for initial prestress distribution of Geiger domes[J]. Spatial Structures, 2003, 9(2):3-8, 19. (in Chinese)
    [6] 董石麟, 袁行飞. 葵花型索穹顶初始预应力分布的简捷算法[J].建筑结构学报, 2004, 25(6):9-14. Dong Shilin, Yuan Xingfei. A simplified calculation method for initial prestress distribution of sunflower-patterned cable domes[J]. Journal of Building Structures, 2004, 25(6):9-14. (in Chinese)
    [7] 董石麟, 王振华, 袁行飞. Levy型索穹顶考虑自重的初始预应力简捷计算法[J]. 工程力学, 2009, 26(4):1-6. Dong Shilin, Wang Zhenhua, Yuan Xingfei. A simplified calculation method for initial prestress of Levy cable domes with the consideration of self-weight[J]. Engineering Mechanics, 2009, 26(4):1-6. (in Chinese)
    [8] 袁行飞, 董石麟. 索穹顶结构整体可行预应力概念及其应用[J]. 土木工程学报, 2001, 34(2):33-37, 61. Yuan Xingfei, Dong Shilin. Application of integrity feasible prestressing to tensegrity cable domes[J]. China Civil Engineering Journal, 2001, 34(2):33-37, 61. (in Chinese)
    [9] 袁行飞, 董石麟. 索穹顶结构的新形式及其初始预应力确定[J]. 工程力学, 2005, 22(2):22-26. Yuan Xingfei, Dong Shilin. New forms and initial prestress calculation of cable domes[J]. Engineering Mechanics, 2005, 22(2):22-26. (in Chinese)
    [10] 曾文平, 王元清, 张勇, 等. 索穹顶结构的预应力设计方法[J]. 工业建筑, 2002, 32(9):24-26. Zeng Wenping, Wang Yuanqing, Zhang Yong, et al. The method of prestress design for cable dome[J]. Industrial Construction, 2002, 32(9):24-26. (in Chinese)
    [11] 阚远, 叶继红. 动力松弛法在索穹顶结构形状确定中的应用[J]. 工程力学, 2007, 24(9):50-55. Kan Yuan, Ye Jihong. Form finding of cable domes by modified dynamic relaxation[J]. Engineering Mechanics, 2007, 24(9):50-55. (in Chinese)
    [12] Schek H J. The force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(1):115-134.
    [13] Barnes M R. Form finding and analysis of tension structures by dynamic relaxation[J]. International Journal of Space Structures, 1999, 14(2):89-104.
    [14] 袁行飞, 董石麟. 索穹顶结构几何稳定性分析[J]. 空间结构, 1999, 5(1):3-9. Yuan Xingfei, Dong Shilin. Analysis of geometric stability for cable domes[J]. Spatial Structures, 1999, 5(1):3-9. (in Chinese)
    [15] 陈联盟, 袁行飞, 董石麟. 索杆张力结构自应力模态分析及预应力优化[J]. 土木工程学报, 2006, 39(2):11-15. Chen Lianmeng, Yuan Xingfei, Dong Shilin. Selfstress mode analysis and optimal prestress design of cable-strut tension structures[J]. China Civil Engineering Journal, 2006, 39(2):11-15. (in Chinese) (上接第35页)
    [16] 方平治. 大气边界层的数值模拟方法研究:修正的壁面函数[D]. 上海:同济大学, 2009. Fang Pingzhi. Study on the numerical simulation method of the atmospheric boundary layer:Modified wall function[D]. Shanghai:Tongji University, 2009. (in Chinese)
    [17] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4):851-875.
    [18] Detering H W, Etling D. Application of the E-ε turbulence model to the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1985, 33(2):113-133.
    [19] Andrén A. A TKE-dissipation model for the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1991, 56(3):207-221.
    [20] Duynkerke P G. Application of the E-ε turbulence closure model to the neutral and stable atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 1988, 45(5):865-880.
    [21] Apsley D D, Castro I P. A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1997, 83(1):75-98.
    [22] Xu D, Taylor P A. An E-ε-l turbulence closure scheme for planetary boundary-layer models:The neutrally stratified case[J]. Boundary-Layer Meteorology, 1997, 84(2):247-266.
    [23] Sogachev A, Kelly M, Leclerc M Y. Consistent two-equation closure modelling for atmospheric research:Buoyancy and vegetation implementations[J]. Boundary-Layer Meteorology, 2012, 145(2):307-327.
    [24] Lettau H. A re-examination of the "Leipzig Wind Profile" considering some relations between wind and turbulence in the frictional layer[J]. Tellus, 1950, 2(2):125-129.
    [25] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 上海:同济大学出版社, 2008:110-113. Huang Bencai, Wang Congjun. Analysis principle and application of structural wind resistance[M]. Shanghai:Tongji University Press, 2008:110-113. (in Chinese)
    [26] Grant A L M. Observations of boundary layer structure made during the 1981 KONTUR experiment[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473):825-841.
    [27] Brost R A, Wyngaard J C, Lenschow D H. Marine stratocumulus layers. Part Ⅱ:Turbulence budgets[J]. Journal of the Atmospheric Sciences, 1982, 39(4):818-836.
    [28] Esau I. Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure[J]. Environmental Fluid Mechanics, 2004, 4(3):273-303.
    [29] 郑徳乾. 基于LES的结构风荷载及气弹响应数值模拟研究[D]. 上海:同济大学, 2011. Zheng Deqian. LES based simulation of wind loads and aeroelastic responses of structures[D]. Shanghai:Tongji University, 2011. (in Chinese)
    [30] Kantha L, Bao J W, Carniel S. A note on Tennekes hypothesis and its impact on second moment closure models[J]. Ocean Modelling, 2005, 9(1):23-29.
    [31] Katul G G, Mahrt L, Poggi D, et al. One-and two-equation models for canopy turbulence[J]. Boundary-Layer Meteorology, 2004, 113(1):81-109.
    [32] Högström U L F. Review of some basic characteristics of the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1996, 78(3):215-246.
    [33] Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289.
  • 期刊类型引用(9)

    1. 冯晓东,冯达,赵文雁,陈耀,郑亦汶. 基于节点松弛法的张拉整体结构力学性能分析. 工程力学. 2025(03): 100-112 . 本站查看
    2. 朱忠义,白光波,周忠发. 索结构找力的扩展广义平衡矩阵奇异值分解法. 建筑结构学报. 2023(04): 118-128 . 百度学术
    3. 汪仁才. 混凝土结构强度现场检测方法原理与应用分析. 安徽建筑. 2023(06): 150-152 . 百度学术
    4. 吴浩,范重,刘涛,杨开,张爱林,张艳霞. 大高差轮辐结构研究与应用. 工程力学. 2022(S1): 272-285 . 本站查看
    5. 赵曦,罗超逸,张艳霞,王庆博. 半球形滑动式索撑节点性能分析. 工业建筑. 2022(08): 132-139 . 百度学术
    6. 李军伟,徐飞,王兵,高阳. 混凝土不同骨料粒径对声发射检测的影响. 山东大学学报(工学版). 2021(05): 84-90 . 百度学术
    7. 秦卫红,王书良,惠卓,解鹏,李云杰. 索穹顶主动索的张拉影响系数. 工业建筑. 2021(10): 1-8 . 百度学术
    8. 鲁建,薛素铎,李雄彦,刘人杰. 索桁张拉结构形状设计及找力分析. 东南大学学报(自然科学版). 2020(02): 244-250 . 百度学术
    9. 冯远,王立维,张彦,邱添,杨文,向新岸,刘翔,廖姝莹. 成都凤凰山专业足球场结构设计. 建筑结构. 2020(19): 15-21+14 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  330
  • HTML全文浏览量:  27
  • PDF下载量:  55
  • 被引次数: 17
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-06-03
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回