一种索穹顶结构初始预应力分布确定的新方法—预载回弹法

向新岸, 冯远, 董石麟

向新岸, 冯远, 董石麟. 一种索穹顶结构初始预应力分布确定的新方法—预载回弹法[J]. 工程力学, 2019, 36(2): 45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971
引用本文: 向新岸, 冯远, 董石麟. 一种索穹顶结构初始预应力分布确定的新方法—预载回弹法[J]. 工程力学, 2019, 36(2): 45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971
XIANG Xin-an, FENG Yuan, DONG Shi-lin. A NEW METHOD OF DETERMINING THE INITIAL PRESTRESS DISTRIBUTION OF CABLE DOMES—THE PRELOAD AND REBOUND METHOD[J]. Engineering Mechanics, 2019, 36(2): 45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971
Citation: XIANG Xin-an, FENG Yuan, DONG Shi-lin. A NEW METHOD OF DETERMINING THE INITIAL PRESTRESS DISTRIBUTION OF CABLE DOMES—THE PRELOAD AND REBOUND METHOD[J]. Engineering Mechanics, 2019, 36(2): 45-52. DOI: 10.6052/j.issn.1000-4750.2017.12.0971

一种索穹顶结构初始预应力分布确定的新方法—预载回弹法

基金项目: 国家重点研发计划项目(2016YFC0701204);国家自然科学基金项目(51678550);中国建筑股份有限公司科研项目(CSCEC-2015-Z-43)
详细信息
    作者简介:

    冯远(1961-),女,四川成都人,教授级高工,全国工程勘察设计大师,学士,总工程师,长期从事大跨空间结构的工程实践及科研工作(E-mail:xnyfy@vip.163.com);董石麟(1932-),男,浙江杭州人,教授,博导,中国工程院院士,长期从事空间结构的科研、教学与工程实践工作.

    通讯作者:

    向新岸(1983-),男,四川成都人,高工,博士,主要从事大跨空间结构的工程实践及科研工作(E-mail:spacexxa@163.com).

  • 中图分类号: TU394;TU318

A NEW METHOD OF DETERMINING THE INITIAL PRESTRESS DISTRIBUTION OF CABLE DOMES—THE PRELOAD AND REBOUND METHOD

  • 摘要: 对索穹顶结构初始预应力分布的确定进行了研究,提出一种新方法—预载回弹法。该方法首先对索穹顶施加一个预设荷载,提取有利于抵抗预设荷载的内力分布。将该组内力作为预应力施加至结构上,并撤除预载,使结构回弹,通过两阶段变弹性模量迭代计算,收敛后可获得索穹顶结构的整体可行预应力分布。该方法通过施加对称荷载,即可自动实现单元的分组,便于整体可行预应力的判定,并可直接获得多自应力模态结构的优化初始预应力分布。通过算例证明预载回弹法具有很高的精度、较快的收敛速度,求得的整体可行预应力分布直接适用于实际工程应用。
    Abstract: The determination of the initial prestress distribution of cable domes is studied and a new method named the Preload and Rebound Method is proposed. A preload is applied to the cable dome first to get the internal force distribution which helps resist the preload. After the preload is removed, the internal force is then applied to the structure as prestress, making the structure rebound. Through the two-stage iterative calculation by using changing elastic modulus, the integrity feasible prestressing distribution of the cable dome is achieved after convergence. By applying a symmetric load, this method automatically groups the members and easily distinguishes the integrity feasible prestressing distribution. The optimized initial prestress distribution of the structure with multi-self-equilibrium stress modes is also directly gained. This method is proved to be accurate and converge fast by several examples. The integrity feasible prestressing distribution obtained through this method can be directly applied to engineering practice.
  • [1] Geiger D H, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korea Olympics[C]//Proceedings of the IASS Symposium:Shells, Membranes and Space Frame. Osaka, 1986, 2:265-272.
    [2] Levy M P. The Georgia dome and beyond achieving lightweight-long span structures[C]//Proceedings of the IASS-ASCE International Symposium:Spatial, Lattice and Tension Structures. New York, 1994:560-562.
    [3] Pellegrino S, Calladine C R. Matrix analysis of statically and kinematically indaterminate frameworks[J]. International Journal of Solids and Structures, 1986, 22(4):409-428.
    [4] Pellegrino S. Structural computations with the singular value decomposition of the equilibrium matrix[J]. International Journal of Solids and Structures, 1993, 30(21):3025-3035.
    [5] 董石麟, 袁行飞. 肋环型索穹顶初始预应力分布的快速计算法[J]. 空间结构, 2003, 9(2):3-8, 19. Dong Shilin, Yuan Xingfei. A quick calculation method for initial prestress distribution of Geiger domes[J]. Spatial Structures, 2003, 9(2):3-8, 19. (in Chinese)
    [6] 董石麟, 袁行飞. 葵花型索穹顶初始预应力分布的简捷算法[J].建筑结构学报, 2004, 25(6):9-14. Dong Shilin, Yuan Xingfei. A simplified calculation method for initial prestress distribution of sunflower-patterned cable domes[J]. Journal of Building Structures, 2004, 25(6):9-14. (in Chinese)
    [7] 董石麟, 王振华, 袁行飞. Levy型索穹顶考虑自重的初始预应力简捷计算法[J]. 工程力学, 2009, 26(4):1-6. Dong Shilin, Wang Zhenhua, Yuan Xingfei. A simplified calculation method for initial prestress of Levy cable domes with the consideration of self-weight[J]. Engineering Mechanics, 2009, 26(4):1-6. (in Chinese)
    [8] 袁行飞, 董石麟. 索穹顶结构整体可行预应力概念及其应用[J]. 土木工程学报, 2001, 34(2):33-37, 61. Yuan Xingfei, Dong Shilin. Application of integrity feasible prestressing to tensegrity cable domes[J]. China Civil Engineering Journal, 2001, 34(2):33-37, 61. (in Chinese)
    [9] 袁行飞, 董石麟. 索穹顶结构的新形式及其初始预应力确定[J]. 工程力学, 2005, 22(2):22-26. Yuan Xingfei, Dong Shilin. New forms and initial prestress calculation of cable domes[J]. Engineering Mechanics, 2005, 22(2):22-26. (in Chinese)
    [10] 曾文平, 王元清, 张勇, 等. 索穹顶结构的预应力设计方法[J]. 工业建筑, 2002, 32(9):24-26. Zeng Wenping, Wang Yuanqing, Zhang Yong, et al. The method of prestress design for cable dome[J]. Industrial Construction, 2002, 32(9):24-26. (in Chinese)
    [11] 阚远, 叶继红. 动力松弛法在索穹顶结构形状确定中的应用[J]. 工程力学, 2007, 24(9):50-55. Kan Yuan, Ye Jihong. Form finding of cable domes by modified dynamic relaxation[J]. Engineering Mechanics, 2007, 24(9):50-55. (in Chinese)
    [12] Schek H J. The force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(1):115-134.
    [13] Barnes M R. Form finding and analysis of tension structures by dynamic relaxation[J]. International Journal of Space Structures, 1999, 14(2):89-104.
    [14] 袁行飞, 董石麟. 索穹顶结构几何稳定性分析[J]. 空间结构, 1999, 5(1):3-9. Yuan Xingfei, Dong Shilin. Analysis of geometric stability for cable domes[J]. Spatial Structures, 1999, 5(1):3-9. (in Chinese)
    [15] 陈联盟, 袁行飞, 董石麟. 索杆张力结构自应力模态分析及预应力优化[J]. 土木工程学报, 2006, 39(2):11-15. Chen Lianmeng, Yuan Xingfei, Dong Shilin. Selfstress mode analysis and optimal prestress design of cable-strut tension structures[J]. China Civil Engineering Journal, 2006, 39(2):11-15. (in Chinese) (上接第35页)
    [16] 方平治. 大气边界层的数值模拟方法研究:修正的壁面函数[D]. 上海:同济大学, 2009. Fang Pingzhi. Study on the numerical simulation method of the atmospheric boundary layer:Modified wall function[D]. Shanghai:Tongji University, 2009. (in Chinese)
    [17] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4):851-875.
    [18] Detering H W, Etling D. Application of the E-ε turbulence model to the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1985, 33(2):113-133.
    [19] Andrén A. A TKE-dissipation model for the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1991, 56(3):207-221.
    [20] Duynkerke P G. Application of the E-ε turbulence closure model to the neutral and stable atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 1988, 45(5):865-880.
    [21] Apsley D D, Castro I P. A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1997, 83(1):75-98.
    [22] Xu D, Taylor P A. An E-ε-l turbulence closure scheme for planetary boundary-layer models:The neutrally stratified case[J]. Boundary-Layer Meteorology, 1997, 84(2):247-266.
    [23] Sogachev A, Kelly M, Leclerc M Y. Consistent two-equation closure modelling for atmospheric research:Buoyancy and vegetation implementations[J]. Boundary-Layer Meteorology, 2012, 145(2):307-327.
    [24] Lettau H. A re-examination of the "Leipzig Wind Profile" considering some relations between wind and turbulence in the frictional layer[J]. Tellus, 1950, 2(2):125-129.
    [25] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 上海:同济大学出版社, 2008:110-113. Huang Bencai, Wang Congjun. Analysis principle and application of structural wind resistance[M]. Shanghai:Tongji University Press, 2008:110-113. (in Chinese)
    [26] Grant A L M. Observations of boundary layer structure made during the 1981 KONTUR experiment[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473):825-841.
    [27] Brost R A, Wyngaard J C, Lenschow D H. Marine stratocumulus layers. Part Ⅱ:Turbulence budgets[J]. Journal of the Atmospheric Sciences, 1982, 39(4):818-836.
    [28] Esau I. Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure[J]. Environmental Fluid Mechanics, 2004, 4(3):273-303.
    [29] 郑徳乾. 基于LES的结构风荷载及气弹响应数值模拟研究[D]. 上海:同济大学, 2011. Zheng Deqian. LES based simulation of wind loads and aeroelastic responses of structures[D]. Shanghai:Tongji University, 2011. (in Chinese)
    [30] Kantha L, Bao J W, Carniel S. A note on Tennekes hypothesis and its impact on second moment closure models[J]. Ocean Modelling, 2005, 9(1):23-29.
    [31] Katul G G, Mahrt L, Poggi D, et al. One-and two-equation models for canopy turbulence[J]. Boundary-Layer Meteorology, 2004, 113(1):81-109.
    [32] Högström U L F. Review of some basic characteristics of the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1996, 78(3):215-246.
    [33] Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289.
  • 期刊类型引用(18)

    1. 殷京科,李典庆,杜文琪. 主余震序列反应谱加速度值正态检验研究. 武汉大学学报(工学版). 2025(01): 1-10 . 百度学术
    2. 段朝杰,陈荣国,石艳柯,王智磊,门文博,何志佳. 基于优选地震强度参数的地下倒虹吸结构易损性分析. 水力发电. 2024(08): 28-37 . 百度学术
    3. 胡进军,刘亦恒,刘巴黎. 面向抗倒塌地震动强度指标选取的特征选择算法性能评估. 地震工程与工程振动. 2024(06): 1-11 . 百度学术
    4. 骆品臣,王东升,成虎. 近断层地震动下减隔震连续梁桥向量型强度指标选取. 工程抗震与加固改造. 2023(01): 1-10 . 百度学术
    5. 邱意坤,甄伟,周长东. 近断层脉冲型地震动强度指标与高耸结构损伤关联性. 哈尔滨工业大学学报. 2023(05): 139-150 . 百度学术
    6. 吴梓楠,韩小雷,马建峰,季静. 基于机器学习的地震动强度指标敏感性分析与破坏势评估. 建筑结构学报. 2023(11): 216-225+235 . 百度学术
    7. 胡进军,靳超越,张辉,胡磊,王中伟. 匹配多目标参数的地震动合成方法. 工程力学. 2022(03): 126-136 . 本站查看
    8. 贾大卫,吴子燕,何乡. 多维性能极限状态下基于模糊失效准则的结构概率地震风险分析. 振动工程学报. 2022(02): 307-317 . 百度学术
    9. 胡进军,刘巴黎,谢礼立. 基于因子分析的地震动特征提取及潜在破坏势评估. 工程力学. 2022(10): 140-151+172 . 本站查看
    10. 谢明志,杨永清,黄胜前,洪彧,李晓斌,庄重. 基于主导模态的高速铁路矮塔斜拉桥易损性地震动强度参数研究. 中国铁道科学. 2021(04): 41-50 . 百度学术
    11. 查军龙,刘洋,戴靠山,王健泽. 工业厂房结构及非结构构件抗震性能参数研究综述. 地震工程与工程振动. 2021(04): 196-208 . 百度学术
    12. 程诗焱,韩建平,于晓辉,吕大刚. 基于BP神经网络的RC框架结构地震易损性曲面分析:考虑地震动强度和持时的影响. 工程力学. 2021(12): 107-117 . 本站查看
    13. 周振宏,朱庆山. 不同地震强度对城市园林景观空间格局指数的影响. 《规划师》论丛. 2021(00): 499-506 . 百度学术
    14. 钟紫蓝,甄立斌,张成明,申轶尧,赵密,杜修力. 桩基结构地震动强度指标优化选取. 地震工程与工程振动. 2020(04): 70-78 . 百度学术
    15. 刘宇哲,郭丽峰. 基于相关性分析的南疆四地州人口与经济发展研究. 现代经济信息. 2020(14): 185-186 . 百度学术
    16. 刘亭亭,于晓辉,吕大刚. RC框架基于典型相关分析的地震动多元破坏势评估. 土木工程学报. 2019(01): 27-36+107 . 百度学术
    17. 朱瑞广,吕大刚. 基于Copula函数的主余震地震动强度参数相关性分析. 工程力学. 2019(02): 114-123 . 本站查看
    32. 侯红梅,刘文锋,陈冠君. 适用于RAC框架结构的地震动强度指标研究. 振动.测试与诊断. 2022(06): 1084-1091+1241 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  334
  • HTML全文浏览量:  27
  • PDF下载量:  55
  • 被引次数: 33
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-06-03
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回