[1] |
Zhang Y, Chen J, Sun C. Damage-based strength reduction factor for nonlinear structures subjected to sequence-type ground motions[J]. Soil Dynamics and Earthquake Engineering, 2017, 92(Supplement C):298-311.
|
[2] |
Wen W, Zhai C, Ji D, et al. Framework for the vulnerability assessment of structure under mainshockaftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2017, 101(Supplement C):41-52.
|
[3] |
Shokrabadi M, Burton H V, Stewart J P. Impact of sequential ground motion pairing on mainshockaftershock structural response and collapse performance assessment[J]. Journal of Structural Engineering, 2018, 144(10):04018177(1-13).
|
[4] |
Ruiz-García J, Aguilar J D. Influence of modeling assumptions and aftershock hazard level in the seismic response of post-mainshock steel framed buildings[J]. Engineering Structures, 2017, 140(Supplement C):437-446.
|
[5] |
Shin M, Kim B. Effects of frequency contents of aftershock ground motions on reinforced concrete (RC) bridge columns[J]. Soil Dynamics and Earthquake Engineering, 2017, 97:48-59.
|
[6] |
丁国, 陈隽. 序列型地震动物理随机模型研究[J]. 工程力学, 2017, 34(9):125-138. Ding Guo, Chen Jun. Study on physical random model of seismic sequences[J]. Engineering Mechanics, 2017, 34(9):125-138. (in Chinese)
|
[7] |
Helmstetter A, Sornette D. Båth's law derived from the Gutenberg-Richter law and from aftershock properties[J]. Geophysical research letters, 2003, 30(20):SDE11. 1-SDE11. 4.
|
[8] |
Båth M. Lateral inhomogeneities of the upper mantle[J]. Tectonophysics, 1965, 2(6):483-514.
|
[9] |
Goda K, Taylor C A. Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(15):2311-2330.
|
[10] |
Goda K. Nonlinear response potential of mainshock-aftershock sequences from Japanese earthquakes[J]. Bulletin of the seismological Society of America, 2012, 102(5):2139-2156.
|
[11] |
杨成, 陈文龙, 徐腾飞. 余震地区桥梁施工过程易损性分析[J]. 工程力学, 2016, 33(增刊1):251-256. Yang Cheng, Chen Wenlong, Xu Tengfei. The vulnerability analysis of bridge construction in aftershock area[J]. Engineering Mechanics, 2016, 33(Suppl 1):251-256. (in Chinese)
|
[12] |
Han R, Li Y, Van De Lindt J. Assessment of seismic performance of buildings with incorporation of aftershocks[J]. Journal of Performance of Constructed Facilities, 2015, 29(3):04014088(1-17).
|
[13] |
赵银刚, 刘庆杰, 王晨, 等. 基于线性回归分析的主余震相关关系[J]. 地震地磁观测与研究, 2017, 38(2):71-76. Zhao Yingang, Liu Qingjie, Wang Chen, et al. Correlation of the minshock-aftershock based on the linear regression[J]. Seismological and Geomagnetic Observation and Research, 2017, 38(2):71-76. (in Chinese)
|
[14] |
Yeo G L, Cornell C A. A probabilistic framework for quantification of aftershock ground-motion hazard in California:Methodology and parametric study[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(1):45-60.
|
[15] |
Kumitani S, Takada T. Probabilistic assessment of buildings damage considering aftershocks of earthquakes[J]. Journal of Structural & Construction Engineering, 2009, 74(74):459-465.
|
[16] |
易桂喜, 龙锋, 张致伟. 汶川M_S8.0地震余震震源机制时空分布特征[J]. 地球物理学报, 2012, 55(4):1213-1227. Yi Guixi, Long Feng, Zhang Zhiwei. Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(4):1213-1227. (in Chinese)
|
[17] |
Li Y, Song R, Van De Lindt J W. Collapse fragility of steel structures subjected to earthquake mainshock aftershock sequences[J]. Journal of Structural Engineering, 2014, 140(12):04014095(1-10).
|
[18] |
Tothong P, Luco N. Probabilistic seismic demand analysis using advanced ground motion intensity measures[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13):1837-1860.
|
[19] |
Baker J W, Allin Cornell C. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(10):1193-1217.
|
[20] |
Baker J W, Allin Cornell C. Spectral shape, epsilon and record selection[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(9):1077-1095.
|
[21] |
Bommer J J, Martnez-Pereira A. The effective duration of earthquake strong motion[J]. Journal of Earthquake Engineering, 1999, 03(02):127-172.
|
[22] |
Iervolino I, Manfredi G, Cosenza E. Ground motion duration effects on nonlinear seismic response[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(1):21-38.
|
[23] |
Raghunandan M, Liel A B. Effect of ground motion duration on earthquake-induced structural collapse[J]. Structural Safety, 2013, 41:119-133.
|
[24] |
Kumar M, Castro J, Stafford P, et al. Influence of the mean period of ground motion on the inelastic dynamic response of single and multi degree of freedom systems[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(3):237-256.
|
[25] |
于晓辉, 吕大刚, 肖寒. 主余震序列型地震动的增量损伤谱研究[J]. 工程力学, 2017, 34(3):47-53, 114. Yu Xiaohui, Lü Dagang, Xiao Han. Incremental damage spectra of mainshock-aftershock sequence-type ground motion[J]. Engineering Mechanics, 2017, 34(3):47-53, 114.
|
[26] |
Kim B, Shin M. A model for estimating horizontal aftershock ground motions for active crustal regions[J]. Soil Dynamics and Earthquake Engineering, 2017, 92:165-175.
|
[27] |
Ruiz-García J, Negrete-Manriquez J C. Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences[J]. Engineering Structures, 2011, 33(2):621-634.
|