基于Copula函数的主余震地震动强度参数相关性分析

朱瑞广, 吕大刚

朱瑞广, 吕大刚. 基于Copula函数的主余震地震动强度参数相关性分析[J]. 工程力学, 2019, 36(2): 114-123. DOI: 10.6052/j.issn.1000-4750.2017.12.0921
引用本文: 朱瑞广, 吕大刚. 基于Copula函数的主余震地震动强度参数相关性分析[J]. 工程力学, 2019, 36(2): 114-123. DOI: 10.6052/j.issn.1000-4750.2017.12.0921
ZHU Rui-guang, LÜ Da-gang. COPULA-BASED CORRELATION ANALYSIS OF INTENSITY MEASURES OF MAINSHOCK-AFTERSHOCK GROUND MOTIONS[J]. Engineering Mechanics, 2019, 36(2): 114-123. DOI: 10.6052/j.issn.1000-4750.2017.12.0921
Citation: ZHU Rui-guang, LÜ Da-gang. COPULA-BASED CORRELATION ANALYSIS OF INTENSITY MEASURES OF MAINSHOCK-AFTERSHOCK GROUND MOTIONS[J]. Engineering Mechanics, 2019, 36(2): 114-123. DOI: 10.6052/j.issn.1000-4750.2017.12.0921

基于Copula函数的主余震地震动强度参数相关性分析

基金项目: 国家自然科学基金面上项目(51678209,51378162);国家自然科学基金青年基金项目(51408155);燕山大学博士基金项目(BL18053)
详细信息
    作者简介:

    朱瑞广(1987-),男,河北人,讲师,博士,主要从事地震动选择和结构抗震研究(E-mail:zrg179@163.com).

    通讯作者:

    吕大刚(1970-),男,黑龙江人,教授,博士,博导,主要从事结构可靠性、工程风险、地震工程等研究(E-mail:ludagang@hit.edu.cn).

  • 中图分类号: P315.9

COPULA-BASED CORRELATION ANALYSIS OF INTENSITY MEASURES OF MAINSHOCK-AFTERSHOCK GROUND MOTIONS

  • 摘要: 该文从PEER NGA-West2地震动数据库挑中选出662条主余震地震动,对主震和余震地震动强度参数之间的相关性进行了分析。计算了主震和余震地震动强度参数之间的相关系数,并结合K-S检验以及AIC准则和BIC准则确定了它们的最优概率模型。同时,利用AIC准则和BIC准则确定了主震和余震地震动强度参数之间的最优Copula函数,并基于Copula函数建立了它们之间的联合分布函数。在此基础之上,给出了给定主震地震动参数条件下,余震地震动强度参数的条件分布和条件均值。研究结果表明:在34个所选强度参数中,卓越持时之间的相关性最高;利用Copula函数可以较为精确地建立主震和余震地震动强度参数间的联合分布;给定主震地震动强度参数条件下,Copula条件均值可以用来预测余震地震动强度参数的取值。
    Abstract: This study selects 662 mainshock-aftershock (MS-AS) ground motions from PEER NGA-West2 ground motion database, to analyze the correlation of the intensity measures (IMs) among the MS-AS ground motions. The correlation coefficients of these IMs among the MS-AS ground motions are calculated, and their optimal probability models are determined according to the K-S test, the AIC criterion and the BIC criterion. Meanwhile, the AIC criterion and the BIC criterion are used to determine the optimal copula functions among the MS-AS ground motion IMs, and their joint distributions are built based on the copula functions. On this basis, the conditional distribution and the conditional mean of the aftershock ground motion IMs are obtained, given those of the mainshock. The results show that: the significant duration has the highest correlation amongst the 34 selected IMs, the joint distributions can be built using the Copula function with reasonable accuracy, and the Copula conditional mean can be used to predict the IMs of the aftershock ground motions, given the IMs of the mainshock ground motions.
  • [1] Zhang Y, Chen J, Sun C. Damage-based strength reduction factor for nonlinear structures subjected to sequence-type ground motions[J]. Soil Dynamics and Earthquake Engineering, 2017, 92(Supplement C):298-311.
    [2] Wen W, Zhai C, Ji D, et al. Framework for the vulnerability assessment of structure under mainshockaftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2017, 101(Supplement C):41-52.
    [3] Shokrabadi M, Burton H V, Stewart J P. Impact of sequential ground motion pairing on mainshockaftershock structural response and collapse performance assessment[J]. Journal of Structural Engineering, 2018, 144(10):04018177(1-13).
    [4] Ruiz-García J, Aguilar J D. Influence of modeling assumptions and aftershock hazard level in the seismic response of post-mainshock steel framed buildings[J]. Engineering Structures, 2017, 140(Supplement C):437-446.
    [5] Shin M, Kim B. Effects of frequency contents of aftershock ground motions on reinforced concrete (RC) bridge columns[J]. Soil Dynamics and Earthquake Engineering, 2017, 97:48-59.
    [6] 丁国, 陈隽. 序列型地震动物理随机模型研究[J]. 工程力学, 2017, 34(9):125-138. Ding Guo, Chen Jun. Study on physical random model of seismic sequences[J]. Engineering Mechanics, 2017, 34(9):125-138. (in Chinese)
    [7] Helmstetter A, Sornette D. Båth's law derived from the Gutenberg-Richter law and from aftershock properties[J]. Geophysical research letters, 2003, 30(20):SDE11. 1-SDE11. 4.
    [8] Båth M. Lateral inhomogeneities of the upper mantle[J]. Tectonophysics, 1965, 2(6):483-514.
    [9] Goda K, Taylor C A. Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(15):2311-2330.
    [10] Goda K. Nonlinear response potential of mainshock-aftershock sequences from Japanese earthquakes[J]. Bulletin of the seismological Society of America, 2012, 102(5):2139-2156.
    [11] 杨成, 陈文龙, 徐腾飞. 余震地区桥梁施工过程易损性分析[J]. 工程力学, 2016, 33(增刊1):251-256. Yang Cheng, Chen Wenlong, Xu Tengfei. The vulnerability analysis of bridge construction in aftershock area[J]. Engineering Mechanics, 2016, 33(Suppl 1):251-256. (in Chinese)
    [12] Han R, Li Y, Van De Lindt J. Assessment of seismic performance of buildings with incorporation of aftershocks[J]. Journal of Performance of Constructed Facilities, 2015, 29(3):04014088(1-17).
    [13] 赵银刚, 刘庆杰, 王晨, 等. 基于线性回归分析的主余震相关关系[J]. 地震地磁观测与研究, 2017, 38(2):71-76. Zhao Yingang, Liu Qingjie, Wang Chen, et al. Correlation of the minshock-aftershock based on the linear regression[J]. Seismological and Geomagnetic Observation and Research, 2017, 38(2):71-76. (in Chinese)
    [14] Yeo G L, Cornell C A. A probabilistic framework for quantification of aftershock ground-motion hazard in California:Methodology and parametric study[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(1):45-60.
    [15] Kumitani S, Takada T. Probabilistic assessment of buildings damage considering aftershocks of earthquakes[J]. Journal of Structural & Construction Engineering, 2009, 74(74):459-465.
    [16] 易桂喜, 龙锋, 张致伟. 汶川M_S8.0地震余震震源机制时空分布特征[J]. 地球物理学报, 2012, 55(4):1213-1227. Yi Guixi, Long Feng, Zhang Zhiwei. Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(4):1213-1227. (in Chinese)
    [17] Li Y, Song R, Van De Lindt J W. Collapse fragility of steel structures subjected to earthquake mainshock aftershock sequences[J]. Journal of Structural Engineering, 2014, 140(12):04014095(1-10).
    [18] Tothong P, Luco N. Probabilistic seismic demand analysis using advanced ground motion intensity measures[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13):1837-1860.
    [19] Baker J W, Allin Cornell C. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(10):1193-1217.
    [20] Baker J W, Allin Cornell C. Spectral shape, epsilon and record selection[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(9):1077-1095.
    [21] Bommer J J, Martnez-Pereira A. The effective duration of earthquake strong motion[J]. Journal of Earthquake Engineering, 1999, 03(02):127-172.
    [22] Iervolino I, Manfredi G, Cosenza E. Ground motion duration effects on nonlinear seismic response[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(1):21-38.
    [23] Raghunandan M, Liel A B. Effect of ground motion duration on earthquake-induced structural collapse[J]. Structural Safety, 2013, 41:119-133.
    [24] Kumar M, Castro J, Stafford P, et al. Influence of the mean period of ground motion on the inelastic dynamic response of single and multi degree of freedom systems[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(3):237-256.
    [25] 于晓辉, 吕大刚, 肖寒. 主余震序列型地震动的增量损伤谱研究[J]. 工程力学, 2017, 34(3):47-53, 114. Yu Xiaohui, Lü Dagang, Xiao Han. Incremental damage spectra of mainshock-aftershock sequence-type ground motion[J]. Engineering Mechanics, 2017, 34(3):47-53, 114.
    [26] Kim B, Shin M. A model for estimating horizontal aftershock ground motions for active crustal regions[J]. Soil Dynamics and Earthquake Engineering, 2017, 92:165-175.
    [27] Ruiz-García J, Negrete-Manriquez J C. Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences[J]. Engineering Structures, 2011, 33(2):621-634.
  • 期刊类型引用(19)

    1. 殷京科,李典庆,杜文琪. 主余震序列反应谱加速度值正态检验研究. 武汉大学学报(工学版). 2025(01): 1-10 . 百度学术
    2. 李喜梅,苏润田,李明睿,母渤海. 主余震序列作用下考虑断层距的桥梁风险分析. 地震研究. 2024(02): 300-310 . 百度学术
    3. 刘明旭,姚国文,彭刚辉,姜云木,喻宣瑞,宋安祥,靳红华. 基于Copula模型的多维地震动参数相关性分析. 科学技术与工程. 2024(08): 3096-3106 . 百度学术
    4. 陈易飞,阳林,黄欢,吴建蓉. 500 kV输电铁塔力学失效分析和失效预测研究. 电工电气. 2024(04): 17-26+53 . 百度学术
    5. 杨荣钦,肖玉磊,池苗苗,穆振侠. 近20 a塔里木河流域人类活动及景观生态风险时空变化. 干旱区研究. 2024(06): 1010-1020 . 百度学术
    6. 王燕航,刘浪. 近断层桥梁抗震的人工合成地震动. 工程建设. 2024(07): 40-45 . 百度学术
    7. 李万润,范科友,吴王浩,杜永峰. 主余震序列作用下风力发电塔架结构的地震损伤研究. 工程力学. 2024(12): 65-79 . 本站查看
    8. 李喜梅,杨天宇,李明睿. 主余震序列作用下基于时间维度的连续梁桥易损性分析. 地震工程学报. 2024(06): 1291-1299 . 百度学术
    9. 王晓磊,王浠铭,阎卫东,吕大刚,包旭. 基于Copula函数的水平和竖向地震动强度参数相关性分析. 工程力学. 2023(05): 79-92 . 本站查看
    10. 王宇泽,闫龙,姜云木,王鑫鹏. 人工主余震型地震动作用下框架结构可靠度. 科学技术与工程. 2023(13): 5421-5428 . 百度学术
    11. 姜云木,阮鑫鑫,刘章军,岳庆霞. 基于工程特性的主余震型地震动降维模拟. 地震工程学报. 2023(03): 735-741 . 百度学术
    12. 刘如月,赖秋兰,颜桂云,郑居焕,袁宇琴. 基于EEMD的远场类谐和地震动人工合成方法. 工程力学. 2023(09): 172-189 . 本站查看
    13. 孙宝成,刘伟莹,孙奔博. 近断层强震作用下跨断层水工隧洞地震动强度参数优选研究. 云南水力发电. 2023(09): 136-141 . 百度学术
    14. 王月,芦燕. 地震和风耦合作用下大跨度单层球面网壳结构动力响应特征及易损性分析. 空间结构. 2023(03): 21-30+58 . 百度学术
    15. 胡进军,靳超越,张辉,胡磊,王中伟. 匹配多目标参数的地震动合成方法. 工程力学. 2022(03): 126-136 . 本站查看
    16. 安道尧. 强震作用下超高层建筑施工全过程安全极限分析. 工业建筑. 2022(03): 117-122 . 百度学术
    17. 胡进军,刘巴黎,谢礼立. 基于因子分析的地震动特征提取及潜在破坏势评估. 工程力学. 2022(10): 140-151+172 . 本站查看
    18. 申家旭,陈隽,丁国. 基于Copula理论的序列型地震动随机模型. 工程力学. 2021(01): 27-39 . 本站查看
    19. 姜云木,阮鑫鑫,刘章军. 主余震型地震动过程的降维模拟. 振动与冲击. 2021(24): 282-292 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数:  587
  • HTML全文浏览量:  54
  • PDF下载量:  105
  • 被引次数: 42
出版历程
  • 收稿日期:  2017-12-06
  • 修回日期:  2018-09-15
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回