O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析

陈云, 陈超, 蒋欢军, 万志威, 刘涛

陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128. DOI: 10.6052/j.issn.1000-4750.2017.11.0805
引用本文: 陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128. DOI: 10.6052/j.issn.1000-4750.2017.11.0805
CHEN Yun, CHEN Chao, JIANG Huan-jun, WAN Zhi-wei, LIU Tao. EXPERIMENT ANALYSIS OF MECHANICAL PROPERTIES OF O-SHAPED STEEL PLATES AND HIGH DAMPING VISCOELASTIC COMPOSITE ENERGY DISSIPATORS[J]. Engineering Mechanics, 2019, 36(1): 119-128. DOI: 10.6052/j.issn.1000-4750.2017.11.0805
Citation: CHEN Yun, CHEN Chao, JIANG Huan-jun, WAN Zhi-wei, LIU Tao. EXPERIMENT ANALYSIS OF MECHANICAL PROPERTIES OF O-SHAPED STEEL PLATES AND HIGH DAMPING VISCOELASTIC COMPOSITE ENERGY DISSIPATORS[J]. Engineering Mechanics, 2019, 36(1): 119-128. DOI: 10.6052/j.issn.1000-4750.2017.11.0805

O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析

基金项目: 国家自然科学基金项目(51408170);海南省重点研发计划项目(ZDYF2016151);海南省科协青年科技英才创新计划项目(201501)
详细信息
    作者简介:

    陈云(1980-),男,陕西人,副教授,博士,主要从事工程结构抗震与防灾研究(E-mail:chenyunhappy@163.com);陈超(1993-),男,四川人,硕士,主要从事结构振动控制研究(E-mail:chenchaosqkcx@163.com);万志威(1992-),男,湖北人,硕士,主要从事结构振动控制研究(E-mail:jnwanzhiwei@163.com);刘涛(1991-),男,陕西人,硕士,主要从事结构振动控制研究(E-mail:tao423589@163.com).

    通讯作者:

    蒋欢军(1973-),男,浙江人,教授,博士,主要从事工程结构抗震与防灾研究(E-mail:jhj73@tongji.edu.cn).

  • 中图分类号: TU317.2;TU352.1

EXPERIMENT ANALYSIS OF MECHANICAL PROPERTIES OF O-SHAPED STEEL PLATES AND HIGH DAMPING VISCOELASTIC COMPOSITE ENERGY DISSIPATORS

  • 摘要: 提出了一种由O型钢板金属阻尼器与高阻尼黏弹性阻尼器并联而成的复合型消能器,阐述了其构造形式和工作机理,对其进行了低周反复加载试验。研究结果表明:复合型消能器具有较强的变形能力和饱满的滞回曲线;其力学性能稳定,受加载频率影响较小;该消能器兼具位移型阻尼器与速度型阻尼器的优点,小变形时,黏弹性阻尼器发挥主要的耗能作用,O型钢板金属阻尼器提供一定的附加刚度,大变形时,二者共同耗能;相比单一类型的消能器,该复合型消能器提高了阻尼力和抗震安全储备;采用Bouc-Wen模型建立了该消能器的力学模型,计算结果与试验结果吻合较好。
    Abstract: A new composite energy dissipator made of two O-shaped steel plate metal dampers and one high damping viscoelastic damper was developed. The construction details and working mechanisms were introduced. Cyclic loading tests on the dissipator were carried out. The test results show that the composite energy dissipator possesses a large deformation capability and a full hysteresis curve. The mechanical properties of the dissipator are stable and insensitive to loading frequencies. It has the advantages of the velocity-dependent damper and displacement-dependent damper. When the deformation is small, the viscoelastic damper plays the major role in energy dissipation, and the O-shaped steel plate metal dampers contribute to stiffness. When the deformation is large, two types of dampers dissipate the seismic energy together. Compared with the dampers of a single type, the composite energy dissipator offers a much larger damping force and seismic safety margin. The calculation model for the composite dissipator was established by using the Bouc-Wen model. The calculation results were in good agreement with experimental results.
  • [1] Song T T, Dargush G F. Passive energy dissipation systems in structural engineering[M]. New York:John Wiley& Sons. Inc., 1997.
    [2] Matsagar V. Special issue:earthquake engineering and structural dynamics[J]. Journal of The Institution of Engineers (India):Series A, 2016, 97(4):355-357.
    [3] Zhou Q, Lu X. Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers[J]. Structural Engineering and Mechanics, 2004, 17(2):187-201.
    [4] Yamamoto M, Sone T. Damping systems that are effective over a wide range of displacement amplitudes using metallic yielding component and viscoelastic damper in series[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(14):2097-2114.
    [5] Moreschi L M, Singh M P. Design of yielding metallic and friction dampers for optimal seismic performance[J]. Earthquake engineering & structural dynamics, 2003, 32(8):1291-1311.
    [6] Dargush G F, Sant R S. Evolutionary aseismic design and retrofit of structures with passive energy dissipation[J]. Earthquake engineering & structural dynamics, 2005, 34(13):1601-1626.
    [7] Castaldo P, De Iuliis M. Optimal integrated seismic design of structural and viscoelastic bracing-damper systems[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(12):1809-1827.
    [8] Guo J W W, Christopoulos C. Response prediction, experimental characterization and P-spectra design of frames with viscoelastic-plastic dampers[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(11):1855-1874.
    [9] Christopoulos C, Montgomery M. Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of high -rise buildings[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(15):2217-2233.
    [10] Tsai KC. Design of steel triangular plate energy absorbers for seismic-resistant construction[J]. Earthquake Spectra, 1993, 9(3):505-528.
    [11] 周云, 刘季. 新型耗能(阻尼)减震器的开发与研究[J]. 地震工程与工程振动, 1998, 18(1):71-79. Zhou Yun, Liu Ji. Development and study of new energy dissipators (dampers)[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(1):71-79. (in Chinese)
    [12] 吴从晓, 周云, 邓雪松. 钢铅粘弹性阻尼器试验研究[J]. 工程力学, 2012, 29(3):150-155. Wu Congxiao, Zhou Yun, Deng Xuesong. Experimental study on steel-lead viscoelastic damper[J]. Engineering Mechanics, 2012, 29(3):150-155. (in Chinese)
    [13] 吴斌, 张纪刚, 欧进萍. 考虑几何非线性的Pall型摩擦阻尼器滞回特性分析[J]. 工程力学, 2003, 20(1):21-26. Wu Bin, Zhang Jigang, Ou Jinping. The analysis of hysteretic behavior of pall-typed frictional dampers considering geometry nonlinearity[J]. Engineering Mechanics, 2003, 20(1):21-26. (in Chinese)
    [14] 邓开来, 潘鹏. 变截面软钢剪切阻尼器试验研究[J]. 工程力学, 2016, 33(5):82-88. Deng Kailai, Pan peng. Experimental study of steel shear panel dampers with varying cross-sections[J]. Engineering Mechanics, 2016, 33(5):82-88. (in Chinese)
    [15] 吴从晓, 周云, 徐昕, 等. 扇形铅黏弹性阻尼器滞回性能试验研究[J]. 建筑结构学报, 2014, 35(4):199-207. Wu Congxiao, Zhou Yun, Xu Xin, Zhang Chao, Deng Xue song. Experimental investigation on hysteretic performance of sector lead viscoelastic damper[J]. Journal of Building Structures, 2014, 35(4):199-207. (in Chinese)
    [16] 钱辉, 李宏男, 任文杰, 等. 形状记忆合金复合摩擦阻尼器设计及试验研究[J]. 建筑结构学报, 2011, 32(9):58-64. Qian Hui, Li Hongnan, Ren Wenjie, Cheng Huai. Experimental investigation of an innovative hybrid shape memory alloys friction damper[J]. Journal of Building Structures, 2011, 32(9):58-64. (in Chinese)
    [17] 任文杰, 王利强, 马志成, 等. 形状记忆合金-摩擦复合阻尼器力学性能研究[J]. 建筑结构学报, 2013, 34(2):83-90. Ren Wenjie, Wang Liqiang, Ma Zhicheng, et al. Investigation on mechanical behavior of innovative shape memory alloy-friction damper[J]. Journal of Building Structures, 2013, 34(2):83-90. (in Chinese)
    [18] 周云, 卢德辉, 张敏. 钢管铅阻尼器的性能试验研究[J]. 土木工程学报, 2017, 50(1):46-52. Zhou Yun, Lu Dehui, Zhang Min. Study on mechanical properties of lead-filled steel tube damper[J]. China Civil Engineering Journal, 2017, 50(1):46-52. (in Chinese)
    [19] 吕西林, 陈云, 蒋欢军. 可更换连梁保险丝抗震性能试验研究[J]. 同济大学学报(自然科学版), 2013, 41(9):1318-1325. Lv Xilin, Chen Yun, Jiang Huanjun. Experimental study on seismic behavior of "Fuse" of replaceable coupling beam[J]. Journal of Tong ji University (Natural Science), 2013, 41(9):1318-1325. (in Chinese)
    [20] 王艮平, 张超, 邓雪松, 等. 扇形铅黏弹性阻尼器加固RC框架的抗震性能试验研究[J]. 土木工程学报, 2016, 49(10):41-48. Wang Genping, Zhang Chao, Deng Xuesong, et al. Experimental study on seismic performance of RC frame retrofitted with sector lead viscoelastic dampers[J]. China Civil Engineering Journal, 2016, 49(10):41-48. (in Chinese)
    [21] 张香成, 何尚文, 李倩, 等. 铅-磁流变阻尼器的试验及计算模型[J]. 工程力学, 2016, 33(10):123-128. Zhang Xiangcheng, He Shangwen, Li Qian, et al. Test and mathematic model of lead magnetorheological damper[J]. Engineering Mechanics, 2016, 33(10):123-128. (in Chinese)
    [22] JG/T 209-2012, 建筑消能阻尼器[S]. 北京:中国标准出版社, 2012. JG/T 209-2012, Dampers for vibration energy dissipation of building[S]. Beijing:China Standard Press, 2012. (in Chinese)
  • 期刊类型引用(11)

    1. 王道航,吴桂香,孙博,黄兆明. 纤维增强黏弹性阻尼器力学性能试验研究. 建筑结构. 2025(04): 52-58 . 百度学术
    2. 尚峰,刘文光,许浩,张强. 单层与多层放大型黏弹阻尼器力学性能研究. 建筑结构学报. 2024(04): 86-96 . 百度学术
    3. 武大洋,张璐,杨国涛,赵斌. 可恢复功能复合结构体系基于复模态叠加法的响应分析和应用. 工程力学. 2024(07): 147-162 . 本站查看
    4. 王伟,陈俊百. 温度相关型结构地震风险评估方法. 工程力学. 2023(05): 93-103+139 . 本站查看
    5. 马乾瑛,李帅,高晓敏,吴宗欢. 复合橡胶基磁流变弹性体的动态力学特性研究与模型验证. 复合材料科学与工程. 2023(09): 5-12+20 . 百度学术
    6. 徐业守,徐赵东,郭迎庆,黄兴淮,葛腾,贺琪. 基于RVE方法的炭黑填充黏弹性材料力学行为研究. 工程力学. 2023(12): 245-256 . 本站查看
    7. 朱云青,吴京,童超,柳东森,谢鲁齐. 带可更换耗能钢棒的装配式混凝土单侧屈服梁柱节点抗震性能试验研究. 工程力学. 2022(07): 205-216+256 . 本站查看
    8. 孙利民,狄方殿,陈林,邹易清. 考虑垂度影响的拉索-双粘滞阻尼器系统振动分析. 工程力学. 2022(08): 49-60 . 本站查看
    9. 卜海峰,蒋欢军,和留生. 剪切型金属阻尼器恢复力模型研究. 工程力学. 2022(10): 131-139 . 本站查看
    10. 徐业守,徐赵东,郭迎庆,黄兴淮,李强强,贺琪. 管约束和分子链缠结作用下黏弹性材料力学行为. 东南大学学报(自然科学版). 2022(06): 1023-1031 . 百度学术
    11. 李旭,赵应龙,朱成华,杨一凡,陈美霞. 不同结构特征的STF阻尼器性能试验对比分析. 中国造船. 2022(05): 233-244 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  581
  • HTML全文浏览量:  71
  • PDF下载量:  136
  • 被引次数: 21
出版历程
  • 收稿日期:  2017-11-01
  • 修回日期:  2018-01-31
  • 刊出日期:  2019-01-28

目录

    /

    返回文章
    返回