用广义协调方法推导的平面四节点等参单元

陈晓明, 李云贵

陈晓明, 李云贵. 用广义协调方法推导的平面四节点等参单元[J]. 工程力学, 2018, 35(12): 1-6,14. DOI: 10.6052/j.issn.1000-4750.2017.09.0706
引用本文: 陈晓明, 李云贵. 用广义协调方法推导的平面四节点等参单元[J]. 工程力学, 2018, 35(12): 1-6,14. DOI: 10.6052/j.issn.1000-4750.2017.09.0706
CHEN Xiao-ming, LI Yun-gui. A 4-NODE ISOPARAMETRIC ELEMENT FORMULATED WITH GENERALIZED CONFORMING CONDITIONS[J]. Engineering Mechanics, 2018, 35(12): 1-6,14. DOI: 10.6052/j.issn.1000-4750.2017.09.0706
Citation: CHEN Xiao-ming, LI Yun-gui. A 4-NODE ISOPARAMETRIC ELEMENT FORMULATED WITH GENERALIZED CONFORMING CONDITIONS[J]. Engineering Mechanics, 2018, 35(12): 1-6,14. DOI: 10.6052/j.issn.1000-4750.2017.09.0706

用广义协调方法推导的平面四节点等参单元

详细信息
    作者简介:

    李云贵(1962-),男,辽宁人,研究员,博士,中国建筑技术中心副主任,主要从事BIM及结构分析研究(E-mail:liyungui@china.com).

    通讯作者:

    陈晓明(1973-),男,山东人,教授级高工,博士,中国建筑技术中心仿真分析室主任,主要从事有限元方法与结构抗震分析研究(E-mail:chenxiaoming@cscec.com).

  • 中图分类号: TU311.4

A 4-NODE ISOPARAMETRIC ELEMENT FORMULATED WITH GENERALIZED CONFORMING CONDITIONS

  • 摘要: 对平面四节点Q4单元采用优选的广义协调条件进行推导,将广义协调理论的应用拓展到最基本的平面问题单元。基于Q6以及QM6中基于内部参数的二次附加位移场,在Q4单元基础上增加满足广义协调条件的内参位移场,从而构造了一个满足广义协调条件的平面四节点等参元GQM6。数值算例表明,虽然采用了相同次数的位移场,但GQM6单元中采用的广义协调条件较QM6中采用的数值积分方法,可以进一步放松单元边界的约束,从而使单元的性能进一步提高,尤其在抗网格畸变能力方面。研究表明,将广义协调理论与一些传统单元进行深入融合仍然有着重要价值。
    Abstract: By using optimized generalized conforming conditions to formulate the plane 4-node element Q4, it is proved that the generalized conforming theory can be expanded to the most fundamental isoparametric elements. Based on the second-order additional displacement field of Q6 and QM6, a new form of additional displacement field was overlaid on Q4 to develop a new element GQM6, which is still second-order and formulated with generalized conforming theory. The numerical results show that the generalized conforming conditions can present more relaxed constraints at element sides than numerical integrals used in QM6, thus the new element GQM6 can exhibit better properties especially on the resistances of mesh distortion. The research shows that it i's still valuable to combine the generalized conforming theory with those traditional finite elements deeply.
  • [1] Wilson E L, Taylor R L, Doherty W P, et al. Incompatible displacement models, numerical and computer methods in structural mechanics[M]. Numerical and Computer Methods in Structural Mechanics. Edited by Steven J. Fenves, Academic Press, New York, 1973:43-57.
    [2] Taylor R L, Beresford P J, Wilson E L. A nonconforming element for stress analysis[J]. Int. J. Num. Meth. Engng., 1976, 10(6):1211-1219.
    [3] Wachspress E L. Incompatible quadrilateral basis functions[J]. International Journal for Numerical methods in Engineering, 1978, 12(4):589-595.
    [4] Pian T H H, Wu Changchun. General formulation of incompatible shape function and an incompatible isoparametric element[C]. Proc. Of the Invitational China-American Workshop on FEM, Chengde, China, 1986:159-165.
    [5] 龙驭球,黄民丰. 广义协调等参元[J]. 应用数学和力学, 1988, 9(10):871-877. Long Yuqiu, Huang Minfeng. A generalized conforming isoparametric element[J]. Applied Mathematics and Mechanics, 1988, 9(10):871-877. (in Chinese)
    [6] Pian T H H, Sumihara K. Rational approach for assumed stress finite elements[J]. International Journal for Numerical methods in Engineering, 1984, 20(9):1685-1695.
    [7] Chen W, Cheung Y K. Three dimensional 8-node and 20-node refined hybrid isoparametric elements[J]. International Journal for Numerical Methods in Engineering, 1992(35):1871-1889.
    [8] 陈万吉, 唐立民. 等参拟协调元[J]. 大连工学院学报, 1981, 20(1):63-74. Chen Wanji, Tang Limin. Isoparametric quasiconforming element[J]. Journal of Dalian University Technology, 1981, 20(1):63-74. (in Chinese)
    [9] Andelfinger U, Ramm E. EAS-elements for twodimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements[J]. International Journal for Numerical Methods in Engineering, 1993(36):1311-1337.
    [10] 胡清元, 夏阳, 胡平, 等. 假设位移拟协调平面单元应变离散算法研究[J]. 工程力学, 2016, 33(9):30-39. Hu Qingyuan, Xia Yang, Hu Ping, et al. Research on the strain discretization algorithm in assumed displacement quasi-conforming plane finite element method[J]. Engineering Mechanics, 2016, 33(9):30-39. (in Chinese)
    [11] 李根, 黄林冲. 一种基于四边形面积坐标的四结点平面参变量单元[J]. 工程力学, 2014, 31(7):15-22. Li Gen, Huang Linchong. A 4-node plane parameterized element based on quadrilateral area coordinate[J]. Engineering Mechanics, 2014, 31(7):15-22. (in Chinese)
    [12] Cen S, Fu X R, Zhou G H, et al. Shape-free finite element method:The plane Hybrid Stress-Function (HS-F) element method for anisotropic materials[J]. Science China:Physics, Mechanics & Astronomy, 2011, 54(4):653-665.
    [13] 岑松, 尚闫, 周培蕾, 等. 形状自由的高性能有限元方法研究的一些进展[J]. 工程力学, 2017, 34(3):1-14. Cen Song, Shang Yan, Zhou Peilei, et al. Advances in shape-free finite element methods:a review[J]. Engineering Mechanics, 2017, 34(3):1-14. (in Chinese)
    [14] Xiaoming Chen, Song Cen, Yungui Li, et al. Several treatments on non-conforming element failed in the strict patch test. mathematical problems in engineering[J]. vol. 2013, Article ID 901495, 7 pages, 2013. doi: 10.1155/2013/901495
    [15] 张春生, 龙驭球, 须寅. 内参型附加非协调位移基本项的推导和应用[J]. 工程力学, 2000, 17(5):23-31. Zhang Chunsheng, Long Yuqiu, Xu Yin. Basic formulations of additional incompatible displacement on internal parameters:derivation and application[J]. Engineering Mechanics, 2000, 17(5):23-31. (in Chinese)
    [16] Cook R D. Improved two-dimension finite element[J]. Journal of the Structural Division, ASCE, 1974, 100ST9:1851-1863.
    [17] Ibrahimgovic A, Taylor R L, Wilson E L. A robust quadrilateral membrane element with rotational degrees of freedom[J]. International Journal for Numerical Methods in Engineering, 1990, 30(3):445-457.
    [18] MacNeal R H, Harder R L. A refined four-noded membrane element with rotational degrees of freedom[J]. Computers & Structures, 1988, 28(1):75-84.
    [19] MacNeal R H, Harder R L. A proposed standard set of problems to test finite element accuracy[J]. Finite Elements in Analysis and Design, 1985, 1(1):3-20.
    [20] Piltner R, Taylor R L. A systematic constructions of B-bar functions for linear and nonlinear mixed-enhanced finite elements for plane elasticity problems[J]. International Journal for Numerical Methods in Engineering, 1999, 44(5):615-639.
  • 期刊类型引用(3)

    1. 傅向荣,陈璞,孙树立,袁明武. 弹性力学有限元分析中的平衡与协调理论. 工程力学. 2023(02): 8-16 . 本站查看
    2. 谢凌洁,肖映雄,徐亚飞. 重力坝问题的非结构分层四边形高阶亚参元分析. 应用力学学报. 2021(03): 902-908 . 百度学术
    3. 李忠学,胡万波. 用于光滑/非光滑壳的稳定化新型协同转动4节点四边形壳单元. 工程力学. 2020(09): 18-29 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  443
  • HTML全文浏览量:  41
  • PDF下载量:  122
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-09-12
  • 修回日期:  2017-12-20
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回