具有复位功能的钢筋混凝土剪力墙设计与性能研究

肖水晶, 徐龙河, 卢啸

肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137. DOI: 10.6052/j.issn.1000-4750.2017.04.0296
引用本文: 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137. DOI: 10.6052/j.issn.1000-4750.2017.04.0296
XIAO Shui-jing, XU Long-he, LU Xiao. DESIGN AND BEHAVIOR STUDY ON REINFORCED CONCRETE SHEAR WALLS WITH SELF-CENTERING CAPABILITY[J]. Engineering Mechanics, 2018, 35(8): 130-137. DOI: 10.6052/j.issn.1000-4750.2017.04.0296
Citation: XIAO Shui-jing, XU Long-he, LU Xiao. DESIGN AND BEHAVIOR STUDY ON REINFORCED CONCRETE SHEAR WALLS WITH SELF-CENTERING CAPABILITY[J]. Engineering Mechanics, 2018, 35(8): 130-137. DOI: 10.6052/j.issn.1000-4750.2017.04.0296

具有复位功能的钢筋混凝土剪力墙设计与性能研究

基金项目: 国家自然科学基金项目(51578058,51408034);北京市自然科学基金项目(8172038)
详细信息
    作者简介:

    肖水晶(1991-),女,江西人,博士生,从事高层建筑结构抗震研究(E-mail:14121117@bjtu.edu.cn);卢啸(1986-),男,湖南人,副教授,博士,从事高层建筑结构抗震研究(E-mail:luxiao1018@gmail.com).

    通讯作者:

    徐龙河(1976-),男,黑龙江人,教授,博士,博导,从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn).

  • 中图分类号: TU352.1+1

DESIGN AND BEHAVIOR STUDY ON REINFORCED CONCRETE SHEAR WALLS WITH SELF-CENTERING CAPABILITY

  • 摘要: 为减轻混凝土剪力墙墙脚处的严重破坏,提高混凝土结构延性并控制震后残余变形,提出一种具有复位功能的钢筋混凝土剪力墙。该自复位剪力墙(SC-SW)通过两侧墙脚设置的碟簧装置提供复位力,利用墙体自身变形耗散地震能量。基于相同的几何尺寸和配筋以及相似的加载规则,建立普通钢筋混凝土剪力墙SW1和自复位剪力墙SC-SW有限元模型,对比分析两者的承载能力,耗能能力及变形能力。结果表明,SC-SW的承载能力略高于SW1,累积滞回耗能大于SW1,并且SC-SW的延性性能相比SW1提高约40.95%。新型SC-SW墙脚处放置碟簧装置可提供必要的抗侧刚度减轻墙脚的破坏,并提供较好的复位能力,能基本消除构件的残余变形,使结构在地震后具有可恢复的功能。
    Abstract: An innovative reinforced concrete shear wall with self-centering capability, which can reduce serious damage at the foot parts of the wall and improve the ductility capacity and control the residual deformation of structures during earthquakes, was developed in this study. The self-centering force of the self-centering shear wall (SC-SW) was provided by the combination disc spring device installed at both sides of the wall, and the seismic energy was dissipated by the deformation of the wall. The finite element models of SC-SW and the general reinforced concrete shear wall SW1 were establilished based on the same geometric dimensions and reinforcement, as well as the similar loading rules. The bearing capacity, energy dissipation and deformation capabilities were compared between the two models. Results indicated that the innovative SC-SW exhibited better energy dissipation capability and bearing capacity, and the ductility capacity of SC-SW was increased by 40.95% compared with SW1. The innovative SC-SW with disc spring device can also provide the necessary lateral stiffness and the restoring force to reduce serious damage at the foot parts of the wall and even eliminate the residual deformation of components, so that the structure has a recoverable function after the earthquakes.
  • [1] 徐龙河, 肖水晶, 卢啸, 等. 钢筋混凝土剪力墙基于变形和滞回耗能非线性组合的损伤演化分析[J]. 工程力学, 2017, 34(8):117-124. Xu Longhe, Xiao Shuijing, Lu Xiao, et al. Damage evolution analysis of reinforced concrete shear wall based on nonlinear combination of deformation and hysteretic energy[J]. Engineering Mechanics, 2017, 34(8):117-124. (in Chinese)
    [2] Kam W Y, Pampanin S, Palermo A, et al. Self-centering structural systems with combination of hysteretic and viscous energy dissipations[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(10):1083-1108.
    [3] 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9):1-10. Zhou Ying, Lü Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Buiding Structures, 2011, 32(9):1-10. (in Chinese)
    [4] 蒋欢军, 刘其舟. 可恢复功能剪力墙结构研究进展[J]. 振动与冲击, 2015, 34(7):51-58. Jiang Huanjun, Liu Qizhou. State-of-the-art of the research advances on resilient shear walls[J]. Journal of Vibration and Shock, 2015, 34(7):51-58. (in Chinese)
    [5] 纪晓东, 钱稼茹. 震后功能可快速恢复联肢剪力墙研究[J]. 工程力学, 2015, 32(10):1-8. Ji Xiaodong, Qian Jiaru. Study of earthquake-resilient coupled shear walls[J]. Engineering Mechanics, 2015, 32(10):1-8. (in Chinese)
    [6] 吕西林, 陈聪. 带有可更换构件的结构体系研究进展[J]. 地震工程与工程振动, 2014, 34(1):27-36. Lü Xilin, Chen Cong. Research progress in structural systems with replaceable members[J]. Earthquake Engineering and Engineering Vibration, 2014, 34(1):27-36. (in Chinese)
    [7] 毛苑君, 吕西林. 带可更换墙脚构件剪力墙的低周反复加载试验[J]. 中南大学学报(自然科学版), 2014, 45(6):2029-2040. Mao Yuanjun, Lü Xilin. Quasi-static cyclic tests of RC shear wall with replaceable foot parts[J]. Journal of Central South University (Science and Technology), 2014, 45(6):2029-2040. (in Chinese)
    [8] Kurama Y, Sause R, Pessiki S, et al. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls[J]. Structural Journal, 1999, 96(4):622-632.
    [9] Kurama Y C. Unbonded post-tensioned precast concrete walls with supplemental viscous damping[J]. ACI Structural Journal, 2000, 97(4):648-658.
    [10] Holden T, Restrepo J, Mander J B. Seismic performance of precast reinforced and prestressed concrete walls[J]. Journal of Structural Engineering, 2003, 129(3):286-296.
    [11] Marriott D, Pampanin S, Bull D, et al. Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions[J]. 2008, 41(2):90-103.
    [12] 吴浩, 吕西林, 蒋欢军, 等. 预应力预制混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(5):208-217. Wu Hao, Lu Xilin, Jiang Huanjun, et al. Experimental study on seismic performance of prestressed precast concrete shear walls[J]. Journal of Buiding Structures, 2016, 37(5):208-217. (in Chinese)
    [13] 党像梁, 吕西林, 钱江, 等. 底部开水平缝预应力自复位剪力墙有限元模拟[J]. 工程力学, 2017, 34(6):51-63. Dang Xiangliang, Lu Xilin, Qian Jiang, et al. Finite element simulation of self-centering pre-stressed shear walls with horizontal bottom slits[J]. Engineering Mechanics, 2017, 34(6):51-63. (in Chinese)
    [14] 徐龙河, 樊晓伟, 逯登成, 等. 预压弹簧自恢复耗能支撑恢复力模型与滞回特性研究[J]. 工程力学, 2016, 33(10):116-122. Xu Longhe, Fan Xiaowei, Lu Dengcheng, et al. Study on restoring force model and hysteretic behaviors of pre-pressed spring self-centering energy dissipation brace[J]. Engineering Mechanics, 2016, 33(10):116-122. (in Chinese)
    [15] Xu L H, Fan X W, Lu D C, et al. Hysteretic behavior studies of self-centering energy dissipation bracing system[J]. Steel and Composite Structures, 2016, 20(6):1205-1219.
    [16] Xu L H, Fan X W, Li Z X. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
    [17] Xu L H, Fan X W, Li Z X. Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs[J]. Earthquake Engineering and Structural Dynamics, 2016, 46(7):1065-1080.
    [18] 钱稼茹, 江枣, 纪晓东. 高轴压比钢管混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2010, 31(7):40-48. Qian Jiaru, Jiang Zao, Ji Xiaodong. Experimental study on seismic behavior of steel tube-reinforced concrete composite shear walls with high axial compressive load ratio[J]. Journal of Buiding Structures, 2010, 31(7):40-48. (in Chinese)
    [19] Qian J, Jiang Z, Ji X. Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading[J]. Engineering Structures, 2012, 36:173-184.
    [20] Mazzoni S, McKenna F, Scott M H, et al. OpenSees users manual[J]. PEER, University of California, Berkeley, 2004:131-184.
  • 期刊类型引用(15)

    1. 贺鹏,黄选明,滕东宇,黄广华,郝祯,孙嘉伟. 大城砖-传统灰浆砌体力学特性及破坏机理试验研究. 建筑科学. 2025(01): 9-19 . 百度学术
    2. 马少春,李泽云,苗长伟,鲍鹏,孔令鹏,王梦. 不同损伤程度下历史建筑青砖抗盐侵蚀性能评价. 河南大学学报(自然科学版). 2025(02): 236-245 . 百度学术
    3. 汪源,余文,王艳,黄辉,贾彬,王汝恒. 藏式毛石砌体受压力学性能试验与数值模拟研究. 建筑结构. 2024(08): 113-119 . 百度学术
    4. 梁建国,赵一帆,陈大川,徐培军,李振华,王高峰. 注浆加固毛石砌体的受压性能试验研究. 建筑结构. 2023(24): 136-140 . 百度学术
    5. 崔玥,杨娜. 藏式山地古建筑结构特征及抗震性能. 建筑结构学报. 2023(S2): 20-31 . 百度学术
    6. 白凡,杨娜,常鹏,旦增格桑,旦增卓嘎,滕东宇. 基于模糊层次法的藏式砌体劣化风险权重系数试验标定研究. 土木与环境工程学报(中英文). 2022(02): 158-164 . 百度学术
    7. 蒋宇洪,杨娜. 基于RVE单元的石砌体有效模量计算方法. 工程力学. 2022(04): 86-99+256 . 本站查看
    8. 汪源,黄辉,贾彬,王汝恒. 传统藏式毛石砌体受压力学性能试验研究. 建筑结构. 2022(08): 118-123 . 百度学术
    9. 吴芝忠,黄辉,汪源,贾彬,王汝恒. 藏式毛石砌体抗压强度对其弹性模量和峰值应变预测. 科学技术与工程. 2022(25): 11130-11136 . 百度学术
    10. 丛宇,谭森龙,王佳豪. 藏式建筑震害分析及加固方法研究. 山西建筑. 2022(24): 24-28+51 . 百度学术
    11. 刘威,杨娜,白凡,常鹏. 基于环境激励的藏式古城墙动力特性研究. 土木工程学报. 2021(04): 45-56 . 百度学术
    12. 孙宏伟,贾艳艳,王少杰,倪韦斌,殷志凯. 现存干砌毛石墙抗震性能试验与原貌保护策略. 工程抗震与加固改造. 2021(02): 117-124 . 百度学术
    13. 常鹏,吴楠楠,王钊,杨娜,白凡. 藏式山地结构有限元模型修正及动力可靠度分析. 土木工程学报. 2020(06): 13-20+41 . 百度学术
    14. 蒋宇洪,杨娜,白凡. 基于RVE单元的藏式古建石砌体均质化研究. 工程力学. 2020(07): 110-124 . 本站查看
    15. 郑文忠,敖日格乐,王英,黄文宣. 碱矿渣陶粒混凝土砌块砌体受压本构关系. 工程力学. 2020(10): 218-227 . 本站查看

    其他类型引用(10)

计量
  • 文章访问数:  501
  • HTML全文浏览量:  53
  • PDF下载量:  75
  • 被引次数: 25
出版历程
  • 收稿日期:  2017-04-17
  • 修回日期:  2017-09-04
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回