地震动多元强度参数主成分与结构损伤的相关性分析

刘亭亭, 于晓辉, 吕大刚

刘亭亭, 于晓辉, 吕大刚. 地震动多元强度参数主成分与结构损伤的相关性分析[J]. 工程力学, 2018, 35(8): 122-129,137. DOI: 10.6052/j.issn.1000-4750.2017.04.0289
引用本文: 刘亭亭, 于晓辉, 吕大刚. 地震动多元强度参数主成分与结构损伤的相关性分析[J]. 工程力学, 2018, 35(8): 122-129,137. DOI: 10.6052/j.issn.1000-4750.2017.04.0289
LIU Ting-ting, YU Xiao-hui, LÜ Da-gang. ANALYSIS OF CORRELATION BETWEEN PRINCIPAL COMPONENTS OF MULTIVARIATE EARTHQUAKE INTENSITY MEASURES AND STRUCTURAL DAMAGE[J]. Engineering Mechanics, 2018, 35(8): 122-129,137. DOI: 10.6052/j.issn.1000-4750.2017.04.0289
Citation: LIU Ting-ting, YU Xiao-hui, LÜ Da-gang. ANALYSIS OF CORRELATION BETWEEN PRINCIPAL COMPONENTS OF MULTIVARIATE EARTHQUAKE INTENSITY MEASURES AND STRUCTURAL DAMAGE[J]. Engineering Mechanics, 2018, 35(8): 122-129,137. DOI: 10.6052/j.issn.1000-4750.2017.04.0289

地震动多元强度参数主成分与结构损伤的相关性分析

基金项目: 国家自然科学基金项目(51678209,51408155,51378162);国家科技支撑计划课题项目(2013BAJ08B01)
详细信息
    作者简介:

    刘亭亭(1987-),女,黑龙江人,博士生,主要从事地震易损性和地震危险性研究(E-mail:liutingtinghit@163.com);于晓辉(1982-),男,辽宁人,副研究员,博士,硕导,主要从事地震易损性和概率风险分析研究(E-mail:yxhhit@126.com).

    通讯作者:

    吕大刚(1970-),男,黑龙江人,教授,博士,博导,副院长,主要从事结构可靠度、地震工程等研究(E-mail:ludagang@hit.edu.cn).

  • 中图分类号: P315.9

ANALYSIS OF CORRELATION BETWEEN PRINCIPAL COMPONENTS OF MULTIVARIATE EARTHQUAKE INTENSITY MEASURES AND STRUCTURAL DAMAGE

  • 摘要: 采用主成分分析方法,考虑多个地震动强度参数,综合分析多元地震动强度参数主成分与结构损伤之间的相关性。以单自由度体系为研究对象,使用三种恢复力模型,选择80条真实地震动记录作为输入,分析得到体系在地震作用下的最大位移和滞回能量。采用挑选的10个地震动强度参数,基于主成分分析方法,构造地震动强度的主成分线性组合,并对地震动强度参数主成分与结构损伤之间的相关性进行分析。结果表明:由于考虑了多个地震动强度参数,相比于单个地震动强度参数与结构损伤之间的相关性,地震动多元强度参数主成分与结构损伤之间的相关性更为稳定。
    Abstract: The correlation between multivariate earthquake intensity measures and structural damage was comprehensively studied by incorporating multiple earthquake intensity measures and adopting the principal component analysis method. The single degree of freedom systems were used as the study objects, which were defined by three kinds of constitutive models. A set of 80 real ground motion records were selected as the inputs, and the structural responses in terms of maximum displacement and hysteretic energy were calculated. Ten earthquake intensity measures were selected, and the principal component analysis method was adopted to construct the principal linear combination of the earthquake intensity measures. Then the correlation between the principal components of multivariate earthquake intensity measures and the structural damage was studied. The results show that, compared with the correlation between a single earthquake intensity measure and structural damage, the correlation between the principal components of earthquake intensity measures and the structural damage is more stable since it considers multiple earthquake intensity measures.
  • [1] 韩建平, 周伟, 李慧. 基于汶川地震数据的地震动强度指标与中长周期SDOF体系最大响应相关性[J]. 工程力学, 2011, 28(10):185-196. Han Jianping, Zhou Wei, Li Hui. Correlation between ground motion intensity indices and SDOF system responses with medium-to-long period based on the wenchuan earthquake data[J]. Engineering Mechanics, 2011, 28(10):185-196. (in Chinese)
    [2] 叶列平, 马千里, 缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动, 2009, 29(4):9-22. Ye Lieping, Ma Qianli, Miu Zhiwei. Study on earthquake intensities for seismic analysis of structures[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(4):9-22. (in Chinese)
    [3] Elenas A, Meskouris K. Correlation study between seismic acceleration parameters and damage indices of structures[J]. Engineering Structures, 2001, 23(6):698-704.
    [4] Elenas A. Correlation between seismic acceleration parameters and overall structural damage indices of buildings[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(1):93-100.
    [5] 李雪红, 李晔暄, 吴迪, 等. 地震动强度指标与结构地震响应的相关性研究[J]. 振动与冲击, 2014, 33(23):184-189. Li Xuehong, Li Yexuan, Wu Di, et al. Correlation between ground motion intensity and structural seismic response[J]. Journal of Vibration and Shock, 2014, 33(23):184-189. (in Chinese)
    [6] 李爽, 谢礼立, 郝敏. 地震动参数及结构整体破坏相关性研究[J]. 哈尔滨工业大学学报, 2007, 39(4):505-509. Li Shuang, Xie Lili, Hao Min. Correlation between seismic ground motion parameters and their relationship with overall damage to structure[J]. Journal of Harbin Institute of Technology, 2007, 39(4):505-509. (in Chinese)
    [7] 卢啸, 陆新征, 叶列平. 超高层建筑地震动强度指标探讨[J]. 土木工程学报, 2012, 45:292-296. Lu Xiao, Lu Xinzheng, Ye Lieping. Discussion on the ground motion intensity measures for super high-rise buildings[J]. China Civil Engineering Journal, 2012, 45:292-296. (in Chinese)
    [8] Housner G W, Jennings P C. The capacity of extreme earthquake motions to damage structures[J]. Structural and Geotechnical Mechanics, 1977:102-116.
    [9] Jolliffe I T. Principal Component Analysis[M]. New York:Springer-Verlag,1986.
    [10] Baker J W, Lin T, Shahi S K, et al. New ground motion selection procedures and selected motions for the PEER transportation research program[R]. Peer Report 2011, 3.
    [11] Ramanathan K, Padgett J E, DesRoches R. Temporal evolution of seismic fragility curves for concrete box-girder bridges in California[J]. Engineering Structures, 2015, 97:29-46.
    [12] Konstantinidis D, Nikfar F. Seismic response of sliding equipment and contents in base-isolated buildings subjected to broadband ground motions[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(6):865-887.
    [13] Wang Z, Dueñas-Osorio L, Padgett J E. Influence of scour effects on the seismic response of reinforced concrete bridges[J]. Engineering Structures, 2014, 76:202-214.
    [14] Riddell R. On ground motion intensity indices[J]. Earthquake Spectra, 2007, 23(1):147-173.
    [15] Narasimhan S, Wang M, Pandey M. Principal component analysis for predicting the response of nonlinear base-isolated buildings[J]. Earthquake Spectra, 2009, 25(1):93-115.
    [16] Pearson K. Notes on the history of correlation[J]. Biometrika, 1920, 13(1):25-45.
    [17] Croux C, Dehon C. Influence functions of the Spearman and Kendall correlation measures[J]. Statistical Methods & Applications, 2010, 19(4):497-515.
    [18] Kendall M G. A new measure of rank correlation[J]. Biometrika, 1938, 30(1/2):81-93.
    [19] 于晓辉, 吕大刚, 王光远. 关于概率地震需求模型的讨论[J]. 工程力学, 2013, 30(8):172-179. Yu Xiaohui, Lü Dagang, Wang Guangyuan. Discussions on probabilistic seismic demand models[J]. Engineering Mechanics, 2013, 30(8):172-179. (in Chinese)
  • 期刊类型引用(18)

    1. 殷京科,李典庆,杜文琪. 主余震序列反应谱加速度值正态检验研究. 武汉大学学报(工学版). 2025(01): 1-10 . 百度学术
    2. 段朝杰,陈荣国,石艳柯,王智磊,门文博,何志佳. 基于优选地震强度参数的地下倒虹吸结构易损性分析. 水力发电. 2024(08): 28-37 . 百度学术
    3. 胡进军,刘亦恒,刘巴黎. 面向抗倒塌地震动强度指标选取的特征选择算法性能评估. 地震工程与工程振动. 2024(06): 1-11 . 百度学术
    4. 骆品臣,王东升,成虎. 近断层地震动下减隔震连续梁桥向量型强度指标选取. 工程抗震与加固改造. 2023(01): 1-10 . 百度学术
    5. 邱意坤,甄伟,周长东. 近断层脉冲型地震动强度指标与高耸结构损伤关联性. 哈尔滨工业大学学报. 2023(05): 139-150 . 百度学术
    6. 吴梓楠,韩小雷,马建峰,季静. 基于机器学习的地震动强度指标敏感性分析与破坏势评估. 建筑结构学报. 2023(11): 216-225+235 . 百度学术
    7. 胡进军,靳超越,张辉,胡磊,王中伟. 匹配多目标参数的地震动合成方法. 工程力学. 2022(03): 126-136 . 本站查看
    8. 贾大卫,吴子燕,何乡. 多维性能极限状态下基于模糊失效准则的结构概率地震风险分析. 振动工程学报. 2022(02): 307-317 . 百度学术
    9. 胡进军,刘巴黎,谢礼立. 基于因子分析的地震动特征提取及潜在破坏势评估. 工程力学. 2022(10): 140-151+172 . 本站查看
    10. 谢明志,杨永清,黄胜前,洪彧,李晓斌,庄重. 基于主导模态的高速铁路矮塔斜拉桥易损性地震动强度参数研究. 中国铁道科学. 2021(04): 41-50 . 百度学术
    11. 查军龙,刘洋,戴靠山,王健泽. 工业厂房结构及非结构构件抗震性能参数研究综述. 地震工程与工程振动. 2021(04): 196-208 . 百度学术
    12. 程诗焱,韩建平,于晓辉,吕大刚. 基于BP神经网络的RC框架结构地震易损性曲面分析:考虑地震动强度和持时的影响. 工程力学. 2021(12): 107-117 . 本站查看
    13. 周振宏,朱庆山. 不同地震强度对城市园林景观空间格局指数的影响. 《规划师》论丛. 2021(00): 499-506 . 百度学术
    14. 钟紫蓝,甄立斌,张成明,申轶尧,赵密,杜修力. 桩基结构地震动强度指标优化选取. 地震工程与工程振动. 2020(04): 70-78 . 百度学术
    15. 刘宇哲,郭丽峰. 基于相关性分析的南疆四地州人口与经济发展研究. 现代经济信息. 2020(14): 185-186 . 百度学术
    16. 刘亭亭,于晓辉,吕大刚. RC框架基于典型相关分析的地震动多元破坏势评估. 土木工程学报. 2019(01): 27-36+107 . 百度学术
    17. 朱瑞广,吕大刚. 基于Copula函数的主余震地震动强度参数相关性分析. 工程力学. 2019(02): 114-123 . 本站查看
    32. 侯红梅,刘文锋,陈冠君. 适用于RAC框架结构的地震动强度指标研究. 振动.测试与诊断. 2022(06): 1084-1091+1241 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  481
  • HTML全文浏览量:  93
  • PDF下载量:  71
  • 被引次数: 33
出版历程
  • 收稿日期:  2017-04-13
  • 修回日期:  2017-06-17
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回