倾斜场地中逆断层错动对上覆土体影响的模型试验研究

石吉森, 凌道盛, 徐泽龙, 黄博

石吉森, 凌道盛, 徐泽龙, 黄博. 倾斜场地中逆断层错动对上覆土体影响的模型试验研究[J]. 工程力学, 2018, 35(7): 194-207. DOI: 10.6052/j.issn.1000-4750.2017.03.0247
引用本文: 石吉森, 凌道盛, 徐泽龙, 黄博. 倾斜场地中逆断层错动对上覆土体影响的模型试验研究[J]. 工程力学, 2018, 35(7): 194-207. DOI: 10.6052/j.issn.1000-4750.2017.03.0247
SHI Ji-sen, LING Dao-sheng, XU Ze-long, HUANG Bo. MODEL TESTING STUDY ON THE INFLUENCE OF REVERSE FAULTING ON OVERLAYING SOIL UNDER AN INCLINED GROUND[J]. Engineering Mechanics, 2018, 35(7): 194-207. DOI: 10.6052/j.issn.1000-4750.2017.03.0247
Citation: SHI Ji-sen, LING Dao-sheng, XU Ze-long, HUANG Bo. MODEL TESTING STUDY ON THE INFLUENCE OF REVERSE FAULTING ON OVERLAYING SOIL UNDER AN INCLINED GROUND[J]. Engineering Mechanics, 2018, 35(7): 194-207. DOI: 10.6052/j.issn.1000-4750.2017.03.0247

倾斜场地中逆断层错动对上覆土体影响的模型试验研究

基金项目: 国家自然科学基金项目(51278451,51578502);重点基础研究发展计划(973计划)项目(2014CB047005).
详细信息
    作者简介:

    石吉森(1988-),男,江苏人,博士生,从事岩土工程的科研工作研究(E-mail:3390183284@qq.com);凌道盛(1968-),男,安徽人,教授,博士,从事岩土工程的科研工作研究(E-mail:dsling@zju.edu.cn);徐泽龙(1989-),男,河南人,博士生,从事岩土工程的科研工作研究(E-mail:651136577@qq.com).

    通讯作者:

    黄博(1973-),女,江苏人,副教授,博士,从事岩土工程的科研工作研究(E-mail:cehuangbo@zju.edu.cn).

  • 中图分类号: TU433

MODEL TESTING STUDY ON THE INFLUENCE OF REVERSE FAULTING ON OVERLAYING SOIL UNDER AN INCLINED GROUND

  • 摘要: 基于设计的断层错动装置和PIV技术,研究了倾斜场地条件下逆断层错动导致上覆土体破裂的过程,重点分析了场地倾斜对破裂带的扩展规律、土体变形和地表变形等的影响。研究结果表明:随着场地倾斜程度增大,破裂带露头时的基岩错动位移也随之增大;不同倾斜场地的破裂带露头倾角均与Rankine理论预测结果更为一致,而Roscoe理论和Vermeer理论的预测结果均有较大误差;断层错动过程中上盘土体应变(剪应变、正应变和等效应变)均大于下盘土体;随着地表倾斜程度增加,露头时刻地表位移和地表位移梯度均随之增大;同时,结合现场实测数据,对建构筑物与断层的避让距离的研究表明:相较于下盘,上盘地表建构筑物的断层避让距离应更大;而随着场地倾角由正变为负,上盘地表建构筑物的避让距离还应增大。
    Abstract: Based on the faulting model test device designed by us and the PIV technique, the rupture process of overlaying soil due to reverse faulting under an inclined ground is studied. The emphasis of the study is put on the influence of surface inclination on the law of faulting rupture propagation, the deformation of soil and surface, etc. The study results show that the bedrock displacement increases with the inclining degree of the surfaces. The propagation angles of ruptures near the ground surfaces are more consistent with the predictions of Rankine theory for different grounds, while the predictions of Roscoe theory and Vermeer theory exhibit larger errors. The shear strain, normal strain and equivalent strain of the soil on the hanging wall are all larger than those on the foot wall during reverse faulting. The displacement of the bedrock has positive influence on the soil displacement and the displacement gradient with the inclining degree of the surfaces. Combined with field test data, the studies on the protection distance of the buildings and structures from the fault show that the protection distance of the buildings and structures on the hanging wall should be larger than those on the foot wall. When the surface inclination angle changes from positive to negative, the protection distance of the buildings and structures on the hanging wall should increase accordingly.
  • [1] Lin A, Ren Z, Jia D, et al. Coseismic thrusting rupture and slip distribution produced by the 2008 M w 7.9 Wenchuan earthquake, China[J]. Tectonophysics, 2009, 471(Suppl 3/4):203-215.
    [2] Walker R T, Wegmann K W, Bayasgalan A, et al. The Egiin Davaa prehistoric rupture, central Mongolia:a large magnitude normal faulting earthquake on a reactivated fault with little cumulative slip located in a slowly deforming intraplate setting[J]. Geological Society London Special Publications, 2017(432):187-213.
    [3] Pucci S, De Martini P M, Civico R, et al. Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy)[J]. Geophysical Research Letters, 2017, 44(5):2138-2147.
    [4] 郑永来, 杨林德, 等. 地下结构抗震[M]. 上海:同济大学出版社, 2005:10-51. Zheng Yonglai, Yang Linde, et al. Earthquake resistance of underground structures[M]. Shanghai:Tongji University Press, 2005:10-51. (in Chinese)
    [5] 吴啸龙, 杨志强, 武继峰, 等. 位错理论模型在福建省沿海交通干线地面沉降模拟中的应用[J]. 东南大学学报自然科学版, 2013(A02):338-342. Wu Xiaolong, Yang Zhiqiang, Wu Jifeng, et al. Application of computed subsidence in fujian coastal traffic area using dislocation model[J]. Journal of Southeast University (Natural Science Edition), 2013(A02):338-342. (in Chinese)
    [6] 何登发, John Suppe. 三角剪切断层传播褶皱作用理论与应用[J]. 地学前缘, 2007, 14(4):66-73. He Dengfa, John Suppe. Theory and application of tri-shear fault propagation folding[J]. Earth Science Frontiers, 2007, 14(4):66-73. (in Chinese)
    [7] Cole D A, Lade P V. Influence zones in alluvium over dip-slip faults[J]. Journal of Geotechnical Engineering, 1984, 110(5):599-615.
    [8] Lin M L, Chung C F, Jeng F S. Deformation of overburden soil induced by thrust fault slip[J]. Engineering Geology, 2006, 88(Suppl 1/2):70-89.
    [9] 杨杰, 陈新民, 沈建. 断层错动在砂土中传播规律的模型试验研究[J]. 防灾科技学院学报, 2011, 13(02):18-23. Yang Jie, Chen Xinmin, Shen Jian. Model test research of the fault slip spreading rule in the soil[J]. Journal of Institute of Disaster Prevention, 2011, 13(02):18-23. (in Chinese)
    [10] 徐泽龙. 逆断层错动引起上覆土层破裂的模型试验研究[D]. 浙江:浙江大学, 2015. Xu Zelong. Experimental study on the fault rupture of overlying soil induced by reverse fault slip[D]. Zhejiang:Zhejiang University, 2015. (in Chinese)
    [11] Bransby M F, Davies M C R, Nahas A E, et al. Centrifuge modelling of reverse fault-foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, 6(4):607-628.
    [12] Bransby M F, Davies M C R, Nahas A E. Centrifuge modelling of normal fault-foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, 6(4):585-605.
    [13] 骆冠勇, 蔡奇鹏, 吴宏伟. 地层错动引起的上覆饱和黏土层变形特性的离心试验研究[J]. 岩土力学, 2012, 33(10):2985-2900, 3000. Luo Guanyong, CAI Qipeng, NG CWW. Centrifuge modelling of ground deformations induced by normal fault in saturated clay[J]. Rock and Soil Mechanics, 2012, 33(10):2985-2900, 3000. (in Chinese)
    [14] 骆冠勇, 吴宏伟, 蔡奇鹏. 地层错动引起的上覆砂层变形特性的离心试验研究[J]. 岩石力学与工程学报, 2010, 29(08):1649-1656. Luo Guanyong, Wu Hongwei, Cai Qipeng. Centrifuge experimental study of deformation characteristics of overlying sand induced by fault rupture[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(08):1649-1656. (in Chinese)
    [15] Wu Hongwei, Cai Q P, Hu P. Centrifuge and numerical modeling of normal fault-rupture propagation in clay with and without a preexisting fracture[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(12):1492-1502.
    [16] 蔡奇鹏, 吴宏伟. 胶结黏土中正断层扩展的变形和孔压变化研究[J]. 岩石力学与工程学报, 2014(2):390-395. Cai Qipeng, Wu Hongwei. Deformation mechanism and variation of pore pressure due to normal fault propagation in cemented clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2014(2):390-395. (in Chinese)
    [17] Anastasopoulos I, Gazetas G, Bransby MF, et al. Fault rupture propagation through sand:finite-element analysis and validation through centrifuge experiments[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(8):943-958.
    [18] Shibuya S, Tamate S, Mitachi T. Interpretation of direct shear box testing of sands as quasi-simple shear[J]. Geotechnique, 1997, 47(4):769-790.
    [19] Adrian R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23(23):261-304.
    [20] 张敏, 吴宏伟. 颗粒图像测速技术在离心试验变形分析中的应用[J]. 岩石力学与工程学报, 2010(A02):3858-3864. Zhang Min, Wu Hongwei Application of particle image velocimetry to deformation analysis in centrifugal tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2010(A02):3858-3864. (in Chinese)
    [21] White D J. An investigation into behavior of pressed-in piles[D]. Cambridge:University of Cambridge, 2003.
    [22] 金浏, 李鸿晶. 逆冲断层作用下埋地管道屈曲分析[J]. 工程力学, 2011, 28(12):98-104. Jin Liu, Li Hongjing. Buckling analysis of buried pipeline subject to reverse fault crossings[J]. Engineering Mechanics, 2011, 28(12):98-104. (in Chinese)
    [23] 刘爱文, 胡聿贤, 李小军, 等. 大口径埋地钢管在地震断层作用下破坏模式的研究[J]. 工程力学, 2005, 22(3):82-87. Liu Aiwen, Hu Yuxian, Li Xiaojun, et al. Damage behavior of large-diameter buried steel pipelines under fault movements[J]. Engineering Mechanics, 2005, 22(3):82-87. (in Chinese)
    [24] 何川, 李林, 张景, 等. 隧道穿越断层破碎带震害机理研究[J]. 岩土工程学报, 2014, 36(3):427-434. He Chuan, Li Lin, Zhang Jing, et al. Seismic damage mechanism of tunnels through fault zones[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3):427-434. (in Chinese)
    [25] Chang Y Y, Lee C J, Huang W C, et al. Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand[J]. Engineering Geology, 2015, 184(2015):52-70.
    [26] Zanjani M M, Soroush A. Numerical modeling of reverse fault rupture propagation through clayey embankments[J]. International Journal of Civil Engineering, 2013, 11:122-132.
    [27] Roscoe K H. The influence of strains in soil mechanics[J]. Géotechnique, 1970, 20(2):129-170.
    [28] Vermeer P. A simple shear band analysis using compliances[C]. Proceeding of IUTAM Conference on Deformation and Failure of Granular Materials, Delft, Netherland:Balkema, 1982.
    [29] Bray J D. Developing mitigation measures for the hazards associated with earthquake surface fault rupture. In:Proceedings of workshop on seismic fault-induced failures-possible remedies for damage to urban facilities. Japan, University of Tokyo, 2001:55-79.
    [30] 赵纪生, 吴景发, 师黎静, 等. 汶川地震地表破裂周围建筑物重建的避让距离[J]. 地震工程与工程振动, 2009, 29(6):96-101. Zhao Jisheng, Wu Jingfa, Shi Lijing, et al. Setback distance determination in reconstruction along the trace of surface rupture caused by M_s8.0 Wenchuan earthquakee[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(6):96-101. (in Chinese)
    [31] Hart Earl W, Bryant William A. Fault-rupture hazard zones in California:Alquist-Priolo Earthquake fault zoning act with index to earthquake fault zones maps[M]. California:Division of Mines and Geology, 1999:7-34.
    [32] GB 50011-2001, 建筑抗震设计规范[M]. 北京:中国建筑工业出版社, 2005. GB 50011-2001, Code for seismic design of building[M]. Beijing:China Architecture Industry Press, 2005. (in Chinese)
  • 期刊类型引用(2)

    1. 何文福,曾一峰,许浩,刘文光,冯德民. 锥形非固结隔震支座理论模型参数试验研究及其结构地震响应分析. 工程力学. 2020(05): 217-227 . 本站查看
    2. 郭光玲. 陕南村镇住宅结构体系抗震能力评价研究——以汉中市留坝县为例. 震灾防御技术. 2020(01): 56-66 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  328
  • HTML全文浏览量:  24
  • PDF下载量:  41
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-03-26
  • 修回日期:  2017-09-27
  • 刊出日期:  2018-07-24

目录

    /

    返回文章
    返回