MULTI-OBJECTIVE OPTIMIZATION OF GENETIC ALGORITHM-BASED FAILURE MODE FOR REINFORCED CONCRETE FRAME-SHEAR WALL STRUCTURES
-
摘要: 该文提出了一种基于遗传算法(GA)的钢筋混凝土框架-剪力墙结构失效模式多目标优化方法。该方法以截面尺寸为优化变量,材料用量为约束条件,最大层间位移角及结构整体损伤指数为算法目标函数,利用基因序列的杂交及变异,实现有利基因的传递。将一5层钢筋混凝土框架结构简化为集中质量体系,验证了优化算法的正确性。以一10层钢筋混凝土框架-剪力墙结构为例,运用增量动态分析(IDA),确定其敏感地震动及相应峰值加速度(PGA),并作为优化过程中的地震动输入。对结构进行静力弹塑性分析,得到其屈服及极限位移,用于计算整体损伤指数。提出了多目标最小值优化问题的线性加权方法,并评价各性能指标的算法收敛性。历经4代共654个随机样本的弹塑性时程分析,结果表明:该方法在不增加材料用量的前提下,使得结构最大层间位移角减少了16.3%,整体损伤值减少了20.8%,各极限状态的年超越概率降低,结构抗倒塌储备系数提高,有效改善了结构的抗震性能。
-
关键词:
- 遗传算法 /
- 失效模式优化 /
- 钢筋混凝土框架-剪力墙结构 /
- 增量动态分析 /
- 性能指标
Abstract: The multi-objective optimization method of genetic algorithm (GA) based failure mode is proposed for reinforced concrete (RC) frame-shear wall structure. The sectional dimensions and materials consumption are served as the optimization variable and constraint condition, respectively. The maximum drift ratio and global structural damage index are used to construct the objective functions of GA related, and the favorable gene is transmitted by the crossover and mutation of the gene sequence. With simplifying a 5-story RC frame structure to a lumped mass system, the validity of the algorithm is proved. A case study of a 10-story RC frame-shear wall structure is carried out. Applying Incremental Dynamic Analysis (IDA), the severest ground motion and corresponding peak ground acceleration are determined to serve as the seismic input during the process of optimization. Meanwhile, pushover analysis is implemented on the structure to obtain the values of the yield and ultimate displacements, which are used to calculate the global damage index. A linear weighted method for the multi-objective minimum optimization problem is proposed to evaluate the algorithm convergence speed for each evaluation criteria of the performance. After 654 random samples' elastic-plastic time-history analyses in 4 generations, on the condition of little increase of materials consumption, it is indicated that the maximum drift ratio of the structure and the global damage index are reduced by 16.3% and 20.8%, respectively. The mean annual exceeding probability of each limit state is decreased, the Collapse Margin Ratio (CMR) is increased at the same time, and the aseismic performance of structure is effectively improved. -
-
[1] 白久林, 欧进萍. 基于IDA方法的钢筋混凝土结构失效模式优化[J]. 工程力学, 2011, 28(增刊Ⅱ):198-203. Bai Jiulin, Ou Jinping. Optimization of failure modes for reinforced concrete buildings based on IDA method[J]. Engineering Mechanics, 2011, 28(SupplⅡ):198-203. (in Chinese) [2] Zacharenaki A E, Fragiadakis M, Papadrakakis M. Reliability-based optimum seismic design of structures using simplified performance estimation methods[J]. Engineering Structure, 2013, 52(9):707-717. [3] Vamvatsikos D. Optimal multi-objective seismic design of a highway bridge by selective use of nonlinear static and dynamic analyses[C]. Proceedings of the 9th international conference on structural safety and reliability, Osaka, Japan, 2009:13-17. [4] Papadopoulos V, Lagaros N D. Vulnerability-based robust design optimization of imperfect shell structures[J]. Structural Safety, 2009, 31(6):475-482. [5] 徐龙河, 吴耀伟, 李忠献, 等. 基于性能的钢框架结构失效模式识别及优化[J]. 工程力学, 2015, 32(10):44-51. Xu Longhe, Wu Yaowei, Li Zhongxian, et al. Performance-based seismic failure mode identification and optimization for steel frame structures[J]. Engineering Mechanics, 2015, 32(10):44-51. (in Chinese) [6] 徐龙河, 吴耀伟, 李忠献. 基于概率的钢框架结构地震失效模式识别方法[J]. 工程力学, 2016, 33(5):66-73. Xu Longhe, Wu Yaowei, Li Zhongxian. Probabilitybased seismic failure modes identification method for steel frame structure[J]. Engineering Mechanics, 2016, 33(5):66-73. (in Chinese) [7] 吕杨. 高层建筑结构地震失效模式优化及损伤控制研究[D]. 天津:天津大学, 2012. Lu Yang. Failure mode optimization and damage control of tall building structures under seismic excitations[D]. Tianjin:Tianjin University, 2012. (in Chinese) [8] 吕大刚, 宋鹏彦, 陈志恒. 钢筋混凝土框架结构基于可靠度的最可能倒塌失效模式分析[J]. 工程力学, 2012, 29(5):156-173. Lu Dagang, Song Pengyan, Chen Zhiheng. Analysis of the most likely collapse modes of RC frame structures based on reliability theory[J]. Engineering Mechanics, 2012, 29(5):156-173. (in Chinese) [9] Beck J L, Chan E, Irfanoglu A, et al. Multi-criteria optimal structural design under uncertainty[J]. Earthquake Engineering and Structural Dynamics, 1999, 28(7):741-761. [10] Powell G H, Allahabadi R. Seismic damage prediction by deterministic methods:concepts and procedures[J]. Earthquake Engineering and Structure Dynamics, 1988, 16(5):719-734. [11] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture and Building Press, 2010. (in Chinese) [12] 包金龙. 考虑场地土层非线性效应的地震危险性曲线[D]. 黑龙江:哈尔滨工业大学, 2010. Bao Jinlong. Seismic Hazard curve considering nonlinear site effect[D]. Heilongjiang:Harbin Institute of Technology, 2010. (in Chinese) [13] Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Method in Applied Mechanics and Engineering, 2000, 186(2/3/4):311-338. [14] 汪小林. 地震作用下钢筋混凝土结构倒塌机理分析[D]. 上海:同济大学, 2014. (in Chinese) Wang Xiaolin. Analysis of collapse mechanisms of reinforced concrete structures under earthquakes[D]. Shanghai:Tongji University, 2014. (in Chinese) [15] 过镇海. 混凝土的强度和本构关系[M]. 北京:中国建筑工业出版社, 2004:22-36. Guo Zhenhai. The strength and the constitutive relation of concrete:principle and application[M]. Beijing:China Building Industry Press, 2004:22-36. (in Chinese) [16] 陆新征, 蒋庆, 缪志伟, 等. 建筑抗震弹塑性分析[M]. 北京:中国建筑工业出版社, 2015:133-141. Lu Xinzheng, Jiang Qing, Liao Zhiwei, et al. Elasto-plastic analysis of buildings against earthquake[M]. Beijing:China Building Industry Press, 2015:133-141. (in Chinese) -
期刊类型引用(14)
1. 谢军,梁金晓,赵国帆,郭飞. 基于天牛须算法的钢筋混凝土框架结构优化. 河北建筑工程学院学报. 2024(01): 22-27 . 百度学术
2. 徐龙河,鞠子薇,江浩. 自复位支撑钢框架抗震性能评估与损伤演化分析. 工程力学. 2024(07): 68-77 . 本站查看
3. 朱经纬,贾春雨,翟晓亮,徐有良,吴永昌. 基于加速遗传算法的钢板组合梁桥设计优化研究. 桥梁建设. 2024(06): 125-132 . 百度学术
4. 史腾,朱劲松,王子挺,秦亚婷. 基于并行计算和遗传算法的钢-UHPC华夫板组合梁优化设计. 计算力学学报. 2023(03): 357-365 . 百度学术
5. 章红梅,胡帆,段元锋. Bouc-Wen模型参数识别的非线性自适应遗传算法和试验验证. 工程力学. 2022(06): 191-201 . 本站查看
6. 高源,方丽,薛贵香. 建筑生命周期碳排放评价函数多目标优化算法. 计算机仿真. 2021(02): 240-243+405 . 百度学术
7. 邓露,钟玉婷,杨远亮,刘艳芝. 冷弯薄壁型钢受弯构件承载力与延性优化研究. 工程力学. 2021(04): 93-101 . 本站查看
8. 蓝煜明,王湛,卢盛灿. 基于失效模式的半刚性钢框架结构优化设计. 贵州大学学报(自然科学版). 2021(02): 91-97 . 百度学术
9. 杜庆学. 高层剪力墙结构钢筋施工技术研究. 中国建筑装饰装修. 2021(08): 176-177 . 百度学术
10. 李远平,蔡远利,李济生. 基于改进粒子群算法的月地转移轨道优化. 工程力学. 2020(03): 238-244 . 本站查看
11. 田永辉. 超厚钢筋混凝土剪力墙模板的内支撑施工技术分析. 山西建筑. 2019(07): 132-134 . 百度学术
12. 汪超,谢能刚,黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计. 工程力学. 2019(04): 248-256 . 本站查看
13. 耿贺松,陈博文,李明伟,杨璨. 基于遗传算法与ANSYS的结构优化方法研究. 华北水利水电大学学报(自然科学版). 2019(04): 26-31 . 百度学术
14. 周宏元,张广才,王小娟,倪萍禾,王利辉. 基于改进蝴蝶优化算法的结构损伤识别. 振动.测试与诊断. 2023(01): 164-171+204 . 百度学术
其他类型引用(26)
计量
- 文章访问数: 538
- HTML全文浏览量: 75
- PDF下载量: 107
- 被引次数: 40