[1] |
郑伟, 许厚泽, 钟敏, 等. 月球探测计划研究进展[J]. 地球物理学进展, 2012, 27(6):2296-2307. Zhen Wei, Xu Houze, Zhong Min, et al. Progress in international lunar exploration programs[J]. Progress in Geophysics, 2012, 27(6):2296-2307. (in Chinese)
|
[2] |
Bruno A D. The restricted 3-body problem[M]. New York:Walter de Gruyter, 1994.
|
[3] |
Jesick M, Ocampo C. Automated generation of symmetric lunar free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1):98-106.
|
[4] |
Ocampo C, Saudemont R R. Initial trajectory model for multi-maneuver Moon-to-Earth abort sequence[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1184-1194.
|
[5] |
彭坤, 孙国江, 王平, 等. 地月空间对称自由返回轨道设计与分析[J]. 航天器工程, 2018, 27(6):27-33. Peng Kun, Sun Guojiang, Wang Ping, et al. Design and analysis of symmetrical free-return trajectories in earth-moon space[J]. Spacecraft Engineering, 2018, 27(6):27-33. (in Chinese)
|
[6] |
王丹阳, 邓辉. 地月自由返回轨道设计[J]. 中国空间科学技术, 2017, 37(1):57-65. Wang Danyang, Deng Hui. Cislunar free return trajectory design[J]. Chinese Space Science and Technology, 2017, 37(1):57-65. (in Chinese)
|
[7] |
刘玥, 钱霙婧, 马林, 等. 月球低能返回轨道设计的混合自适应遗传算法[J]. 哈尔滨工业大学学报, 2016, 48(4):79-83. Liu Yue, Qian Yingjing, Ma Lin, et al. An adaptive genetic algorithm for low energy lunar return trajectory design[J]. Journal of Harbin Institute of Technology, 2016, 48(4):79-83. (in Chinese)
|
[8] |
Anhorn W. Design of fast earth-return trajectories from a lunar base[D]. Monteray:Naval Postgraduate School, 1991.
|
[9] |
高玉东, 郗晓宁, 白玉铸, 等. 月球探测器返回轨道快速搜索设计[J]. 宇航学报, 2008, 29(3):765-771. Gao Yudong, Xi Xiaoning, Bai Yuzhu, et al. Fast searching design method for return transfer trajectory of lunar probe[J]. Journal of Astronautics, 2008, 29(3):765-771. (in Chinese)
|
[10] |
Whitley R J, Ocampo C A, Williams J. Performance of an autonomous multi-maneuver algorithm for lunar trans-Earth injection[J]. Journal of Spacecraft & Rockets, 2015, 49(1):165-174.
|
[11] |
颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4):69-77. Yan Xintong, Xu Longhe. Multi-objective optimization of genetic algorithm-based failure mode for reinforced concrete frame-shear wall structures[J]. Engineering Mechanics, 2018, 35(4):69-77. (in Chinese)
|
[12] |
Schnetzler B. Optimization by simulated annealing[J]. Science, 1992, 220(4598):671-680.
|
[13] |
Kennedy J, Eberhart R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, Piscataway:IEEE Press, 1995, 4:1942-1948.
|
[14] |
Dorigo M, Maniezzo V, Colorni A. The ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1):29-41.
|
[15] |
Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1):108-132.
|
[16] |
杨振伟, 周广东, 伊廷华, 等. 基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究[J]. 工程力学, 2019, 36(3):63-70. Yang Zhenwei, Zhou Guangdong, Yi Tinghua, et al. Optimal vibration sensor placement for bridges using gradation-immune firefly algorithm[J]. Engineering Mechanics, 2019, 36(3):63-70. (in Chinese)
|
[17] |
汪超, 谢能刚, 黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计[J]. 工程力学, 2019, 36(4):248-256. Wang Chao, Xie Nenggang, Huang Lulu. Design and shape optimization of holed structure by extended isogeometric analysis and chaotic ion motion optimization[J]. Engineering Mechanics, 2019, 36(4):248-256. (in Chinese)
|
[18] |
Wang D S, Tan D P, Liu L. Particle swarm optimization algorithm:An overview[J]. Soft Computing, 2018, 22(2), 387-408.
|
[19] |
Li M, Chen H, Wang X D, et al. An improved particle swarm optimization algorithm with adaptive inertia weights[J]. International Journal of Information Technology & Decision Making, 2019, 18(3):833-866.
|
[20] |
Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1):58-73.
|