HE Ying, DING Xiao-fan, LIU Zhong-xian, YANG De-jian, WANG Dai. SPATIAL CORRELATED MULTI-POINT GROUND MOTION SIMULATION IN SEDIMENTARY VALLEY CONSIDERING SOIL NON-LINEARITY[J]. Engineering Mechanics, 2023, 40(10): 99-111. DOI: 10.6052/j.issn.1000-4750.2022.01.0068
Citation: HE Ying, DING Xiao-fan, LIU Zhong-xian, YANG De-jian, WANG Dai. SPATIAL CORRELATED MULTI-POINT GROUND MOTION SIMULATION IN SEDIMENTARY VALLEY CONSIDERING SOIL NON-LINEARITY[J]. Engineering Mechanics, 2023, 40(10): 99-111. DOI: 10.6052/j.issn.1000-4750.2022.01.0068

SPATIAL CORRELATED MULTI-POINT GROUND MOTION SIMULATION IN SEDIMENTARY VALLEY CONSIDERING SOIL NON-LINEARITY

More Information
  • Received Date: January 16, 2022
  • Revised Date: May 12, 2022
  • Available Online: May 19, 2022
  • A simulation method for spatial correlated multi-point ground motion in sedimentary valley considering soil nonlinear properties is proposed, which combines the reasonable spectral density function, the coherent function and the displacement amplitude ratio considering soil non-linearity and field scattering effect. Among them, the field nonlinear displacement amplitude ratio is calculated by the equivalent linearization method of coupled Finite Element-Indirect boundary element. The rationality and feasibility of the method are verified by the V-shaped semi-full valley model. The results show that, compared with the linear results, the peak value of ground motion acceleration decreases and the predominant period of response spectrum increases with the nonlinearity of the soil considered, and the magnitude of change is related to the thickness of the covering layer. The thicker the overburden, the greater the variation range, and the more significant the nonlinear effect. The research in this paper can provide important method and scientific support for seismic fortification of long-span engineering structures in valley site.
  • [1]
    周国良, 李小军, 侯春林, 等. SV波入射下河谷地形地震动分布特征分析[J]. 岩土力学, 2012, 33(4): 1161 − 1166. doi: 10.3969/j.issn.1000-7598.2012.04.029

    ZHOU Guoliang, LI Xiaojun, HOU Chunlin, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves [J]. Rock and Soil Mechanics, 2012, 33(4): 1161 − 1166. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.04.029
    [2]
    刘晶波. 局部不规则地形对地震地面运动的影响[J]. 地震学报, 1996, 18(2): 239 − 245.

    LIU Jingbo. The effect of local irregular topography on seismic ground motion [J]. Acta Seismologica Sinica, 1996, 18(2): 239 − 245. (in Chinese)
    [3]
    张孝波, 景立平, 肖文海. 大型河谷场地地震动特性研究[J]. 防灾减灾工程学报, 2010, 30(6): 644 − 649.

    ZHANG Xiaobo, JING Liping, XIAO Wenhai. Research on ground motion characteristics of large-scale valley [J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(6): 644 − 649. (in Chinese)
    [4]
    梁建文, 严林隽, LEE V W. 圆弧形层状沉积谷地对入射平面SV波散射解析解[J]. 固体力学学报, 2003, 24(2): 235 − 243. doi: 10.3969/j.issn.0254-7805.2003.02.016

    LIANG Jianwen, YAN Linjun, LEE V W. Diffraction of plane SV waves by a circular-arc layered alluvial valley: analytical solution [J]. Chinese Journal of Solid Mechanics, 2003, 24(2): 235 − 243. (in Chinese) doi: 10.3969/j.issn.0254-7805.2003.02.016
    [5]
    GATMIRI B. HYBRID a powerful boundary element-finite element method (BEM/FEM) software for analysis of seismic response of multiphase porous media [J]. International Conference on Computational & Experimental Engineering and Sciences, 2007, 4(3): 159 − 165. doi: 10.1002/nme.1620190408
    [6]
    刘中宪, 武凤娇, 王冬. 沉积盆地-山体耦合场地对平面P波、SV波和Rayleigh波的二维散射分析[J]. 工程力学, 2016, 33(2): 160 − 171. doi: 10.6052/j.issn.1000-4750.2014.05.0396

    LIU Zhongxian, WU Fengjiao, WANG Dong. Two dimensional scattering analysis of plane P, SV, and Rayleigh waves by coupled alluvial basin-mountain terrain [J]. Journal of Engineering Mechanics, 2016, 33(2): 160 − 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.0396
    [7]
    刘中宪, 陈頔, 黄磊, 等. 沉积谷地二维非线性地震反应FEM-IBIEM耦合分析[J]. 防灾减灾工程学报, 2021, 41(2): 287 − 293.

    LIU Zhongxian, CHEN Di, HUANG Lei, et al. Nonlinear seismic response analysis of sedimentary valley based on the coupled FEM-IBIEM [J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(2): 287 − 293. (in Chinese)
    [8]
    陈国兴, 李磊, 丁杰发, 等. 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056 − 3065.

    CHEN Guoxing, LI Lei, DING Jiefa, et al. Nonlinear seismic response characteristics of extremely deep deposit site with volcanic hard rock interlayers [J]. Rock and Soil Mechanics, 2020, 41(9): 3056 − 3065. (in Chinese)
    [9]
    朱传彬, 张建经. SH波斜入射盆地地表的时域非线性地震反应分析[J]. 地下空间与工程学报, 2014, 10(4): 834 − 841.

    ZHU Chuanbin, ZHANG Jianjing. Time-domain nonlinear seismic response analysis of basin surface due to inclined SH wave [J]. Journal of Underground Space and Engineering, 2014, 10(4): 834 − 841. (in Chinese)
    [10]
    张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10): 52 − 61. doi: 10.6052/j.issn.1000-4750.2015.03.0215

    ZHANG Ji, LIANG Jianwen, BA Zhenning. Equivalent linear analysis of seismic response of horizontally layered fluid-saturated poroelastic half-space [J]. Engineering Mechanics, 2016, 33(10): 52 − 61. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0215
    [11]
    张季, 谭灿星, 叶国涛, 等. SV波超临界角斜入射时层状地基地震动输入在ABAQUS中的实现[J]. 工程力学, 2021, 38(4): 200 − 210. doi: 10.6052/j.issn.1000-4750.2020.06.0378

    ZHANG Ji, TAN Canxing, YE Guotao, et al. Realization of ground motion input in ABAQUS for layered foundation under sv wave of oblique incidence over critical angle [J]. Journal of Engineering Mechanics, 2021, 38(4): 200 − 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0378
    [12]
    王笃国, 赵成刚. 地震波斜入射下考虑场地非线性、地形效应和土结动力相互作用的大跨连续刚构桥地震响应分析[J]. 工程力学, 2017, 34(4): 32 − 41. doi: 10.6052/j.issn.1000-4750.2015.03.0180

    WANG Duguo, ZHAO Chenggang. Seismic analysis of long-span continuous rigid frame bridge considering site nonlinearity, topography effect and soil-structure dynamic interaction under oblique incidence [J]. Engineering Mechanics, 2017, 34(4): 32 − 41. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0180
    [13]
    王笃国, 赵成刚. 考虑频率参数协调的频率相关等效线性化方法[J]. 工程力学, 2019, 36(9): 169 − 179. doi: 10.6052/j.issn.1000-4750.2018.08.0471

    WANG Duguo, ZHAO Chenggang. Frequency-dependent equivalent linear method for seismic site response considering the compatibility of frequency parameters [J]. Journal of Engineering Mechanics, 2019, 36(9): 169 − 179. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.0471
    [14]
    HAO H, OLIVEIRA C S, PENZIEN J. Multiple-station ground motion processing and simulation based on smart-1 array data [J]. North-Holland, 1989, 111(3): 293 − 310. doi: 10.1016/0029-5493(89)90241-0
    [15]
    屈铁军, 王前信. 空间相关的多点地震动合成(I): 基本公式[J]. 地震工程与工程振动, 1998, 18(1): 8 − 15.

    QU Tiejun, WANG Qianxin. Simulation of spatial correlative time histories of multi-point ground motion, Part I: Fundamental formulas [J]. Earthquake Engineering and Engineering Vibration, 1998, 18(1): 8 − 15. (in Chinese)
    [16]
    屈铁军, 王前信. 空间相关的多点地震动合成(II): 合成实例[J]. 地震工程与工程振动, 1998, 18(2): 25 − 32.

    QU Tiejun, WANG Qianxin. Simulation of spatial correlative time histories of multi-point ground motion, Part Ⅱ: Application of fundamental formulas [J]. Earthquake Engineering and Engineering Vibration, 1998, 18(2): 25 − 32. (in Chinese)
    [17]
    屈铁军, 王君杰, 王前信. 空间变化的地震动功率谱的实用模型[J]. 地震学报, 1996, 18(1): 55 − 62.

    QU Tiejun, WANG Junjie, WANG Qianxin. A practical model of spatially varying ground motion power spectrum [J]. Acta Seismological Sinica, 1996, 18(1): 55 − 62. (in Chinese)
    [18]
    田利, 盖霞. 复杂地形场地上多维多点地震动模拟研究[J]. 振动与冲击, 2016, 35(14): 195 − 201.

    TIAN Li, GAI Xia. Simulation on multi-support and multi-dimensional ground motions in complicated terrain area [J]. Journal of Vibration and Shock, 2016, 35(14): 195 − 201. (in Chinese)
    [19]
    王德才, 华贝, 种迅, 等. 基于输入能量的地震动时程强度包络函数研究[J]. 工程力学, 2019, 36(9): 161 − 168. doi: 10.6052/j.issn.1000-4750.2018.08.0452

    WANG Decai, HUA Bei, CHONG Xun, et al. Study on the time history envelope function of ground motion based on input energy [J]. Journal of Engineering Mechanics, 2019, 36(9): 161 − 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.0452
    [20]
    李忠献, 李笑穹, 李宁. 空间相关多点多维地震动的模拟[J]. 地震工程与工程振动, 2014, 34(4): 64 − 72.

    LI Zhongxian, LI Xiaoqiong, LI Ning. Simulation of multi-point and multi-dimension spatially correlated earthquake ground motions [J]. Earthquake Engineering and Engineering Vibration, 2014, 34(4): 64 − 72. (in Chinese)
    [21]
    WU Y X, GAO Y F, ZHANG N, et al. Simulation of spatially varying ground motions in V-shaped symmetric canyons [J]. Journal of Earthquake Engineering, 2016, 20(6): 992 − 1010. doi: 10.1080/13632469.2015.1010049
    [22]
    何颖, 于琴, 刘中宪. 考虑散射效应沉积河谷空间相关多点地震动模拟[J]. 岩土力学, 2019, 40(7): 2739 − 2747.

    HE Ying, YU Qin, LIU Zhongxian. Simulation of multi-point spatially correlated earthquake ground motions of sedimentary valleys considering scattering effect [J]. Rock and Soil Mechanics, 2019, 40(7): 2739 − 2747. (in Chinese)
    [23]
    HE Y, LIU Z X, YU Q, et al. Simulation of the spatially correlated multiple-station earthquake ground motions of the coupled alluvial valley-hill terrain [J]. Engineering Analysis with Boundary Elements, 2020, 118(1): 41 − 53. doi: 10.1016/j.enganabound.2020.05.004
    [24]
    SCHNABEL P B, LYSMER J, SEED H B. SHAKE: A computer program for earthquake response analysis of horizontally layered sites [R]. Berkeley: University of California, Earthquake Engineering Research Center, 1972.
    [25]
    CHANG Y H, TSAI C C, GE L, et al. Influence of horizontally variable soil properties on nonlinear seismic site response and ground motion coherency [J]. Earthquake Engineering & Structural Dynamics, 2021, 51(3): 704 − 722. doi: 10.1002/eqe.3587
    [26]
    陈国兴, 夏高旭, 王彦臻, 等. 琼州海峡海床地震反应特性的一维非线性分析[J]. 工程力学, 2022, 39(5): 75 − 85. doi: 10.6052/j.issn.1000-4750.2021.03.0167

    CHEN Guoxing, XIA Gaoxu, WANG Yanzhen, et al. One-dimensional nonlinear seismic response analysis for seabed site effect assessment in the Qiongzhou strait [J]. Engineering Mechanics, 2022, 39(5): 75 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0167
    [27]
    KANAI K. Semi-empirical formula for the seismic characteristics of the ground motion [J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1957, 35(2): 308 − 325.
    [28]
    CLOUGH R W, PENZIEN J. 结构动力学[M]. 王光远译. 北京: 科学出版社, 1981.

    CLOUGH R W, PENZIEN J. Structural dynamics [M]. Translated by WANG Guangyuan. Beijing: Science Press, 1981. (in Chinese)
    [29]
    SOBCZKY K. Stochastic wave propagation [M]. Netherlands: Kluwer Academic Publishers, 1991.
    [30]
    DRAVINSKI M, MOSSESSIAN T K. Scattering of plane harmonic P, SV, and Rayleigh waves by dipping layers of arbitrary shape [J]. Bulletin of the Seismological Society of America, 1987, 77(1): 212 − 235.
  • Related Articles

    [1]LIANG Jing-yu, LU De-chun, SHEN Wan-tao, QI Ji-lin. THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT[J]. Engineering Mechanics, 2023, 40(10): 169-178. DOI: 10.6052/j.issn.1000-4750.2022.01.0096
    [2]TANG Qiong, LI Yi, LU Xin-zheng, YAN Wei-ming. Study on axial compression capacity of multi-spiral hoops confined concrete columns[J]. Engineering Mechanics, 2018, 35(S1): 166-171. DOI: 10.6052/j.issn.1000-4750.2017.06.S033
    [3]CHENG Song-song, CHEN Wan-xiang, GUO Zhi-kun, ZHANG Yan-yan. CARRYING-CAPACITIES OF RC SLABS WITH FULLY-FIXED SUPPORTS BASED ON THE COMPRESSIVE-TENSILE MEMBRANE EFFECT[J]. Engineering Mechanics, 2018, 35(12): 81-88. DOI: 10.6052/j.issn.1000-4750.2017.09.0673
    [4]JIN De-hai, XU Ming. PARAMETER CORRECTION METHOD OF BURGERS MODEL FOR COARSE-GRAINED SOIL CONSIDERING CONFINING PRESSURE[J]. Engineering Mechanics, 2016, 33(12): 135-142. DOI: 10.6052/j.issn.1000-4750.2015.04.0360
    [5]JING Guo-qing, WANG Zi-jie, SHI Xiao-yi. BALLAST TRIAXIAL TESTS AND NON-BREAKABLE PARTICLE DISCRETE ELEMENT METHOD ANALYSIS UNDER DIFFERENT CONFINING PRESSURES[J]. Engineering Mechanics, 2015, 32(10): 82-88. DOI: 10.6052/j.issn.1000-4750.2014.03.0205
    [6]ZHOU Chun-sheng. NUMERICAL ANALYSIS OF GAS PERMEABILITY OF CONCRETE INCORPORATING RECYCLED AGGREGATE[J]. Engineering Mechanics, 2012, 29(12): 204-210. DOI: 10.6052/j.issn.1000-4750.2011.05.0270
    [7]LIU Jun-zhong, XU Jin-yu, Lü Xiao-cong, WANG Ze-dong, ZHANG Lei. STUDY ON DYNAMIC BEHAVIOR AND DAMAGE CONSTITUTIVE MODEL OF ROCK UNDER IMPACT LOADING WITH CONFINING PRESSURE[J]. Engineering Mechanics, 2012, 29(1): 55-63.
    [8]LU Xiao-cong, XU Jin-yu, ZHAO De-hui, GE Hong-hai. RESEARCH ON CONFINING PRESSURE EFFECT OF SANDSTONE DYNAMIC MECHANICAL PERFORMANCE UNDER THE CYCLICAL IMPACT LOADINGS[J]. Engineering Mechanics, 2011, 28(1): 138-144.
    [9]XUE Zhi-gang, HU Shi-sheng. DYNAMIC BEHAVIOR OF CEMENT MORTAR UNDER CONFINEMENT[J]. Engineering Mechanics, 2008, 25(12): 184-188,.
    [10]LI Shun-cai, MIAO Xie-xing, CHEN Zhan-qing, MAO Xian-biao. EXPERIMENTAL STUDY ON SEEPAGE PROPERTIES OF NON-DARCY FLOW IN CONFINED BROKEN ROCKS[J]. Engineering Mechanics, 2008, 25(4): 85-092.
  • Cited by

    Periodical cited type(8)

    1. 王颂,张路青,周剑,李晓,潘哲君,杨多兴,李国梁. 致密储层岩石超低渗测试系统研发与应用进展. 工程地质学报. 2024(04): 1186-1198 .
    2. 卜宜顺,杨圣奇,黄彦华. 温度和损伤程度对砂岩渗透特性影响的试验研究. 工程力学. 2021(05): 122-130 . 本站查看
    3. 刘健,陈亮,王春萍,马利科,王驹. 一种非稳态气体渗流条件下岩石渗透特性参数计算方法及应用. 岩土力学. 2019(05): 1721-1730 .
    4. 秦志军,龚传根,朱鹏辉,李雪浩,王伟. 干湿循环作用对大理岩渗透性影响的试验研究. 三峡大学学报(自然科学版). 2019(03): 6-10 .
    5. 冉艳霞,叶斌,程子睿. 致密岩石介质中气体滑脱效应的研究进展. 地质力学学报. 2018(04): 498-504 .
    6. 马戎荣,徐卫亚,刘攀. 基于正交设计的高重度相似材料三轴压缩试验研究. 河南科学. 2018(02): 215-221 .
    7. 巢志明,王环玲,徐卫亚,吉华,赵恺. 循环加卸载下柱状节理材料渗透率和孔隙度演化规律研究. 岩石力学与工程学报. 2017(01): 124-141 .
    8. 巢志明,王环玲,徐卫亚,杨兰兰,赵恺. 不同饱和度砂岩渗透率、孔隙度随应力变化规律研究. 岩石力学与工程学报. 2017(03): 665-680 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (363) PDF downloads (68) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return