Citation: | LIANG Jing-yu, LU De-chun, SHEN Wan-tao, QI Ji-lin. THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT[J]. Engineering Mechanics, 2023, 40(10): 169-178. DOI: 10.6052/j.issn.1000-4750.2022.01.0096 |
[1] |
LAI Y M, XU X T, DONG Y H, et al. Present situation and prospect of mechanical research on frozen soils in China [J]. Cold Regions Science and Technology, 2013, 87: 6 − 18. doi: 10.1016/j.coldregions.2012.12.001
|
[2] |
ZHANG Y G, LIU S H, LU Y, et al. Experimental study of the mechanical behavior of frozen clay–gravel composite [J]. Cold Regions Science and Technology, 2021, 189: 103340. doi: 10.1016/j.coldregions.2021.103340
|
[3] |
朱梦杰, 任亮, 李宏男, 等. 基于iBeam3单元逆有限元法的冻土区管道变形研究[J]. 工程力学, 2022, 39(10): 61 − 67. doi: 10.6052/j.issn.1000-4750.2021.05.0334
ZHU Mengjie, REN Liang, LI Hongnan, et al. Research on pipeline deformation in permafrost region using inverse finite element method based on iBeam3 element [J]. Engineering Mechanics, 2022, 39(10): 61 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0334
|
[4] |
郑先昌, 郑伟锋. 中国南极中山站区冻土融沉和冻胀模拟试验及基础对策研究[J]. 工程力学, 2010, 27(增刊 1): 154 − 158.
ZHENG Xianchang, ZHENG Weifeng. Freeze-thaw and freeze-heaving experiment and the fundamental countermeasure of the China Zhongshan station in the south pole [J]. Engineering Mechanics, 2010, 27(Suppl 1): 154 − 158. (in Chinese)
|
[5] |
KIM S Y, HONG W T, LEE J S. Role of the coefficient of uniformity on the California bearing ratio, penetration resistance, and small strain stiffness of coarse arctic soils [J]. Cold Regions Science and Technology, 2019, 160: 230 − 241. doi: 10.1016/j.coldregions.2019.02.012
|
[6] |
谢剑, 闫明亮, 刘洋. 极地低温下冻融作用对混凝土断裂性能的影响[J]. 工程力学, 2023, 40(2): 202 − 212. doi: 10.6052/j.issn.1000-4750.2021.08.0656
XIE Jian, YAN Mingliang, LIU Yang. Effect of freezing and thawing on fracture performance of concrete at polar low temperature [J]. Engineering Mechanics, 2023, 40(2): 202 − 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0656
|
[7] |
KANG Y S, HOU C C, LI K J, et al. Evolution of temperature field and frozen wall in sandy cobble stratum using LN2 freezing method [J]. Applied Thermal Engineering, 2021, 185: 116334. doi: 10.1016/j.applthermaleng.2020.116334
|
[8] |
荣传新, 王秀喜, 程桦. 深厚冲积层冻结壁和井壁共同作用机理研究[J]. 工程力学, 2009, 26(3): 235 − 239.
RONG Chuanxin, WANG Xiuxi, CHENG Hua. A study on interaction mechanism of frozen soil wall and shaft lining in deep alluvium [J]. Engineering Mechanics, 2009, 26(3): 235 − 239. (in Chinese)
|
[9] |
QI J L, WANG F Y, PENG L Y, et al. Model test on the development of thermal regime and frost heave of a gravelly soil under seepage during artificial freezing [J]. Cold Regions Science and Technology, 2022, 196: 103495. doi: 10.1016/j.coldregions.2022.103495
|
[10] |
马巍, 吴紫汪, 盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报, 1995, 5(17): 7 − 11.
MA Wei, WU Ziwang, SHENG Yu. Effect of confining pressure on strength behaviour of frozen soil [J]. Chinese Journal of Geotechnical Engineering, 1995, 5(17): 7 − 11. (in Chinese)
|
[11] |
牛亚强, 赖远明, 王旭, 等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学, 2016, 37(2): 499 − 506.
NIU Yaqiang, LAI Yuanming, WANG Xu, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay [J]. Rock and Soil Mechanics, 2016, 37(2): 499 − 506. (in Chinese)
|
[12] |
齐吉琳, 党博翔, 徐国方, 等. 冻土强度研究的现状分析[J]. 北京建筑大学学报, 2016, 32(3): 89 − 95. doi: 10.3969/j.issn.1004-6011.2016.03.015
QI Jilin, DANG Boxiang, XU Guofang, et al. A state of the art for strength of frozen soils [J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(3): 89 − 95. (in Chinese) doi: 10.3969/j.issn.1004-6011.2016.03.015
|
[13] |
ZHAO J L, ZHANG P, YANG X, et al. On the uniaxial compression strength of frozen gravelly soils [J]. Cold Regions Science and Technology, 2020, 171: 102965. doi: 10.1016/j.coldregions.2019.102965
|
[14] |
LIAO M K, LAI Y M, WANG C. A strength criterion for frozen sodium sulfate saline soil [J]. Canadian Geotechnical Journal, 2016, 53(7): 1176 − 1185. doi: 10.1139/cgj-2015-0569
|
[15] |
LI X, YAN Y, JI S Y. Mechanical properties of frozen ballast aggregates with different ice contents and temperatures [J]. Construction and Building Materials, 2022, 317: 125893. doi: 10.1016/j.conbuildmat.2021.125893
|
[16] |
LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics [J]. International Journal of Plasticity, 2010, 26(10): 1461 − 1484. doi: 10.1016/j.ijplas.2010.01.007
|
[17] |
张德, 刘恩龙, 刘星炎, 等. 冻结粉土强度准则探讨[J]. 岩土力学, 2018, 39(9): 3237 − 3245.
ZHANG De, LIU Enlong, LIU Xingyan, et al. Investigation on strength criterion for frozen silt soils [J]. Rock and Soil Mechanics, 2018, 39(9): 3237 − 3245. (in Chinese)
|
[18] |
CHAMBERLAIN E, GROVES C, PERHAM R. The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions [J]. Géotechnique, 1972, 22(3): 469 − 483.
|
[19] |
XU X T, LAI Y M, DONG Y H, et al. Laboratory investigation on strength and deformation characteristics of ice-saturated frozen sandy soil [J]. Cold Regions Science and Technology, 2011, 69(1): 98 − 104. doi: 10.1016/j.coldregions.2011.07.005
|
[20] |
LUO F, LIU E L, ZHU Z Y. A strength criterion for frozen moraine soils [J]. Cold Regions Science and Technology, 2019, 164: 102786.
|
[21] |
LADE POUL V. Modelling the strengths of engineering materials in three dimensions [J]. Mechanics of Cohesive-Frictional Materials, 1997, 2(4): 339 − 356. doi: 10.1002/(SICI)1099-1484(199710)2:4<339::AID-CFM36>3.0.CO;2-R
|
[22] |
XIAO Y, MENG M Q, CHEN H, et al. Nonlinear regression model for peak-failure strength of rockfill materials in general stress space [J]. Geoscience Frontiers, 2018, 9(6): 1699 − 1709.
|
[23] |
姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学E辑: 工程科学 材料科学, 2004, 34(11): 1283 − 1299.
YAO Yangping, LU Dechun, ZHOU Annan, et al. Generalized non-linear strength theory and transformed stress space [J]. Science in China Series E: Engineering and Materials Science, 2004, 34(11): 1283 − 1299. (in Chinese)
|
[24] |
黄景琦, 杜修力, 马超, 等. 岩石三维强度准则的研究[J]. 工程力学, 2018, 35(3): 30 − 40. doi: 10.6052/j.issn.1000-4750.2017.03.0216
HUANG Jingqi, DU Xiuli, MA Chao, et al. Study on three-dimensional strength criterion for rocks [J]. Engineering Mechanics, 2018, 35(3): 30 − 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0216
|
[25] |
FISH A M. Strength of frozen soil under a combined stress state [C]// Proceedings of 6th International Symposium on Ground Freezing. Rotterdam, Netherlands: A. A. Balkema, 1991: 135 − 145.
|
[26] |
XU X T, WANG B X, FAN C X, et al. Strength and deformation characteristics of silty clay under frozen and unfrozen states [J]. Cold Regions Science and Technology, 2020, 172: 102982.
|
[27] |
YANG Y G, LAI Y M, LI J B. Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure [J]. Cold Regions Science and Technology, 2010, 60(3): 245 − 250. doi: 10.1016/j.coldregions.2009.11.003
|
[28] |
CHEN D, WANG D Y, MA W, et al. A strength criterion for frozen clay considering the influence of stress Lode angle [J]. Canadian Geotechnical Journal, 2019, 56(11): 1557 − 1572. doi: 10.1139/cgj-2018-0054
|
[29] |
LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory [J]. International Journal of Plasticity, 2016, 78: 84 − 113. doi: 10.1016/j.ijplas.2015.10.008
|
[30] |
ZHANG D, LIU E L, LIU X Y, et al. A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents [J]. Cold Regions Science and Technology, 2017, 143: 1 − 12. doi: 10.1016/j.coldregions.2017.08.006
|
[31] |
QI J L, MA W. A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure [J]. Acta Geotechnica, 2007, 2(3): 221 − 226. doi: 10.1007/s11440-007-0034-z
|
[32] |
张德, 刘恩龙, 刘星炎, 等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报, 2018, 37(4): 978 − 986.
ZHANG De, LIU Enlong, LIU Xingyan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978 − 986. (in Chinese)
|
[33] |
LIU X Y, LIU E L, ZHANG D, et al. Study on strength criterion for frozen soil [J]. Cold Regions Science and Technology, 2019, 161: 1 − 20. doi: 10.1016/j.coldregions.2019.02.009
|
[34] |
YANG Y G, LAI Y M, CHANG X X. Laboratory and theoretical investigations on the deformation and strength behaviors of artificial frozen soil [J]. Cold Regions Science and Technology, 2010, 64(1): 39 − 45. doi: 10.1016/j.coldregions.2010.07.003
|
[35] |
杜修力, 马超, 路德春. 岩土类材料的静水压力效应[J]. 岩石力学与工程学报, 2015, 34(3): 572 − 582.
DU Xiuli, MA Chao, LU Dechun. Effect of hydrostatic pressure on geomaterials [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 572 − 582. (in Chinese)
|
[36] |
ENGEMANN S, REICHERT H, DOSCH H, et al. Interfacial melting of ice in contact with SiO2 [J]. Physical Review Letters, 2004, 92(20): 205701. doi: 10.1103/PhysRevLett.92.205701
|
[37] |
ROBERT R. Why is ice slippery? [J]. Physics Today, 2005, 58(12): 50 − 55. doi: 10.1063/1.2169444
|
[38] |
COLBECK S C. Pressure melting and ice skating [J]. American Journal of Physics, 1995, 63(10): 888 − 890. doi: 10.1119/1.18028
|
1. |
李瀚翔,王正中,李理想,刘铨鸿,江浩源. 基于周向冻缩变形协调的衬砌渠道防冻胀纵缝计算方法. 工程力学. 2024(10): 225-236 .
![]() |