LIANG Jing-yu, LU De-chun, SHEN Wan-tao, QI Ji-lin. THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT[J]. Engineering Mechanics, 2023, 40(10): 169-178. DOI: 10.6052/j.issn.1000-4750.2022.01.0096
Citation: LIANG Jing-yu, LU De-chun, SHEN Wan-tao, QI Ji-lin. THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT[J]. Engineering Mechanics, 2023, 40(10): 169-178. DOI: 10.6052/j.issn.1000-4750.2022.01.0096

THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT

More Information
  • Received Date: January 19, 2022
  • Revised Date: April 20, 2022
  • Available Online: May 11, 2022
  • The confining pressure effect of the shear strength of frozen soil is the basis and prerequisite for analysing the bearing capacity of engineering construction in cold regions and the engineering project constructed by the artificial freezing method. As the confining pressure increases, the existing test results of shear strength of the frozen soils show both a two-stage law that increases first and then decreases, and a three-stage law that increases first, then decreases and then increases again. In order to characterize the special development of the shear strength of frozen soils, properties of soils and ice are analysed. It is believed that the shear strength of frozen soil presents a multi-stage development, not only because it inherits the strength characteristics of the soil, but also because the existence of pore ice makes a special contribution to shear strength. On the basis of the above analysis, the shear strength of frozen soil is decomposed into the base strength reflecting the cohesive-friction properties and the special contribution strength of pore ice to the shear strength of frozen soil. By adopting the power function strength expression as the base strength of frozen soil, and further establishing the contributed strength describing the strengthening and weakening rules of frozen soil, a three-stage strength criterion incorporating the confining pressure effect is developed for frozen soils. The comparison between the test results of frozen soils in different types and the predictions shows that the established strength criterion is capable of capturing the variation rule of shear strength of frozen soils.
  • [1]
    LAI Y M, XU X T, DONG Y H, et al. Present situation and prospect of mechanical research on frozen soils in China [J]. Cold Regions Science and Technology, 2013, 87: 6 − 18. doi: 10.1016/j.coldregions.2012.12.001
    [2]
    ZHANG Y G, LIU S H, LU Y, et al. Experimental study of the mechanical behavior of frozen clay–gravel composite [J]. Cold Regions Science and Technology, 2021, 189: 103340. doi: 10.1016/j.coldregions.2021.103340
    [3]
    朱梦杰, 任亮, 李宏男, 等. 基于iBeam3单元逆有限元法的冻土区管道变形研究[J]. 工程力学, 2022, 39(10): 61 − 67. doi: 10.6052/j.issn.1000-4750.2021.05.0334

    ZHU Mengjie, REN Liang, LI Hongnan, et al. Research on pipeline deformation in permafrost region using inverse finite element method based on iBeam3 element [J]. Engineering Mechanics, 2022, 39(10): 61 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0334
    [4]
    郑先昌, 郑伟锋. 中国南极中山站区冻土融沉和冻胀模拟试验及基础对策研究[J]. 工程力学, 2010, 27(增刊 1): 154 − 158.

    ZHENG Xianchang, ZHENG Weifeng. Freeze-thaw and freeze-heaving experiment and the fundamental countermeasure of the China Zhongshan station in the south pole [J]. Engineering Mechanics, 2010, 27(Suppl 1): 154 − 158. (in Chinese)
    [5]
    KIM S Y, HONG W T, LEE J S. Role of the coefficient of uniformity on the California bearing ratio, penetration resistance, and small strain stiffness of coarse arctic soils [J]. Cold Regions Science and Technology, 2019, 160: 230 − 241. doi: 10.1016/j.coldregions.2019.02.012
    [6]
    谢剑, 闫明亮, 刘洋. 极地低温下冻融作用对混凝土断裂性能的影响[J]. 工程力学, 2023, 40(2): 202 − 212. doi: 10.6052/j.issn.1000-4750.2021.08.0656

    XIE Jian, YAN Mingliang, LIU Yang. Effect of freezing and thawing on fracture performance of concrete at polar low temperature [J]. Engineering Mechanics, 2023, 40(2): 202 − 212. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0656
    [7]
    KANG Y S, HOU C C, LI K J, et al. Evolution of temperature field and frozen wall in sandy cobble stratum using LN2 freezing method [J]. Applied Thermal Engineering, 2021, 185: 116334. doi: 10.1016/j.applthermaleng.2020.116334
    [8]
    荣传新, 王秀喜, 程桦. 深厚冲积层冻结壁和井壁共同作用机理研究[J]. 工程力学, 2009, 26(3): 235 − 239.

    RONG Chuanxin, WANG Xiuxi, CHENG Hua. A study on interaction mechanism of frozen soil wall and shaft lining in deep alluvium [J]. Engineering Mechanics, 2009, 26(3): 235 − 239. (in Chinese)
    [9]
    QI J L, WANG F Y, PENG L Y, et al. Model test on the development of thermal regime and frost heave of a gravelly soil under seepage during artificial freezing [J]. Cold Regions Science and Technology, 2022, 196: 103495. doi: 10.1016/j.coldregions.2022.103495
    [10]
    马巍, 吴紫汪, 盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报, 1995, 5(17): 7 − 11.

    MA Wei, WU Ziwang, SHENG Yu. Effect of confining pressure on strength behaviour of frozen soil [J]. Chinese Journal of Geotechnical Engineering, 1995, 5(17): 7 − 11. (in Chinese)
    [11]
    牛亚强, 赖远明, 王旭, 等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学, 2016, 37(2): 499 − 506.

    NIU Yaqiang, LAI Yuanming, WANG Xu, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay [J]. Rock and Soil Mechanics, 2016, 37(2): 499 − 506. (in Chinese)
    [12]
    齐吉琳, 党博翔, 徐国方, 等. 冻土强度研究的现状分析[J]. 北京建筑大学学报, 2016, 32(3): 89 − 95. doi: 10.3969/j.issn.1004-6011.2016.03.015

    QI Jilin, DANG Boxiang, XU Guofang, et al. A state of the art for strength of frozen soils [J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(3): 89 − 95. (in Chinese) doi: 10.3969/j.issn.1004-6011.2016.03.015
    [13]
    ZHAO J L, ZHANG P, YANG X, et al. On the uniaxial compression strength of frozen gravelly soils [J]. Cold Regions Science and Technology, 2020, 171: 102965. doi: 10.1016/j.coldregions.2019.102965
    [14]
    LIAO M K, LAI Y M, WANG C. A strength criterion for frozen sodium sulfate saline soil [J]. Canadian Geotechnical Journal, 2016, 53(7): 1176 − 1185. doi: 10.1139/cgj-2015-0569
    [15]
    LI X, YAN Y, JI S Y. Mechanical properties of frozen ballast aggregates with different ice contents and temperatures [J]. Construction and Building Materials, 2022, 317: 125893. doi: 10.1016/j.conbuildmat.2021.125893
    [16]
    LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics [J]. International Journal of Plasticity, 2010, 26(10): 1461 − 1484. doi: 10.1016/j.ijplas.2010.01.007
    [17]
    张德, 刘恩龙, 刘星炎, 等. 冻结粉土强度准则探讨[J]. 岩土力学, 2018, 39(9): 3237 − 3245.

    ZHANG De, LIU Enlong, LIU Xingyan, et al. Investigation on strength criterion for frozen silt soils [J]. Rock and Soil Mechanics, 2018, 39(9): 3237 − 3245. (in Chinese)
    [18]
    CHAMBERLAIN E, GROVES C, PERHAM R. The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions [J]. Géotechnique, 1972, 22(3): 469 − 483.
    [19]
    XU X T, LAI Y M, DONG Y H, et al. Laboratory investigation on strength and deformation characteristics of ice-saturated frozen sandy soil [J]. Cold Regions Science and Technology, 2011, 69(1): 98 − 104. doi: 10.1016/j.coldregions.2011.07.005
    [20]
    LUO F, LIU E L, ZHU Z Y. A strength criterion for frozen moraine soils [J]. Cold Regions Science and Technology, 2019, 164: 102786.
    [21]
    LADE POUL V. Modelling the strengths of engineering materials in three dimensions [J]. Mechanics of Cohesive-Frictional Materials, 1997, 2(4): 339 − 356. doi: 10.1002/(SICI)1099-1484(199710)2:4<339::AID-CFM36>3.0.CO;2-R
    [22]
    XIAO Y, MENG M Q, CHEN H, et al. Nonlinear regression model for peak-failure strength of rockfill materials in general stress space [J]. Geoscience Frontiers, 2018, 9(6): 1699 − 1709.
    [23]
    姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学E辑: 工程科学 材料科学, 2004, 34(11): 1283 − 1299.

    YAO Yangping, LU Dechun, ZHOU Annan, et al. Generalized non-linear strength theory and transformed stress space [J]. Science in China Series E: Engineering and Materials Science, 2004, 34(11): 1283 − 1299. (in Chinese)
    [24]
    黄景琦, 杜修力, 马超, 等. 岩石三维强度准则的研究[J]. 工程力学, 2018, 35(3): 30 − 40. doi: 10.6052/j.issn.1000-4750.2017.03.0216

    HUANG Jingqi, DU Xiuli, MA Chao, et al. Study on three-dimensional strength criterion for rocks [J]. Engineering Mechanics, 2018, 35(3): 30 − 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0216
    [25]
    FISH A M. Strength of frozen soil under a combined stress state [C]// Proceedings of 6th International Symposium on Ground Freezing. Rotterdam, Netherlands: A. A. Balkema, 1991: 135 − 145.
    [26]
    XU X T, WANG B X, FAN C X, et al. Strength and deformation characteristics of silty clay under frozen and unfrozen states [J]. Cold Regions Science and Technology, 2020, 172: 102982.
    [27]
    YANG Y G, LAI Y M, LI J B. Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure [J]. Cold Regions Science and Technology, 2010, 60(3): 245 − 250. doi: 10.1016/j.coldregions.2009.11.003
    [28]
    CHEN D, WANG D Y, MA W, et al. A strength criterion for frozen clay considering the influence of stress Lode angle [J]. Canadian Geotechnical Journal, 2019, 56(11): 1557 − 1572. doi: 10.1139/cgj-2018-0054
    [29]
    LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory [J]. International Journal of Plasticity, 2016, 78: 84 − 113. doi: 10.1016/j.ijplas.2015.10.008
    [30]
    ZHANG D, LIU E L, LIU X Y, et al. A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents [J]. Cold Regions Science and Technology, 2017, 143: 1 − 12. doi: 10.1016/j.coldregions.2017.08.006
    [31]
    QI J L, MA W. A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure [J]. Acta Geotechnica, 2007, 2(3): 221 − 226. doi: 10.1007/s11440-007-0034-z
    [32]
    张德, 刘恩龙, 刘星炎, 等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报, 2018, 37(4): 978 − 986.

    ZHANG De, LIU Enlong, LIU Xingyan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978 − 986. (in Chinese)
    [33]
    LIU X Y, LIU E L, ZHANG D, et al. Study on strength criterion for frozen soil [J]. Cold Regions Science and Technology, 2019, 161: 1 − 20. doi: 10.1016/j.coldregions.2019.02.009
    [34]
    YANG Y G, LAI Y M, CHANG X X. Laboratory and theoretical investigations on the deformation and strength behaviors of artificial frozen soil [J]. Cold Regions Science and Technology, 2010, 64(1): 39 − 45. doi: 10.1016/j.coldregions.2010.07.003
    [35]
    杜修力, 马超, 路德春. 岩土类材料的静水压力效应[J]. 岩石力学与工程学报, 2015, 34(3): 572 − 582.

    DU Xiuli, MA Chao, LU Dechun. Effect of hydrostatic pressure on geomaterials [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 572 − 582. (in Chinese)
    [36]
    ENGEMANN S, REICHERT H, DOSCH H, et al. Interfacial melting of ice in contact with SiO2 [J]. Physical Review Letters, 2004, 92(20): 205701. doi: 10.1103/PhysRevLett.92.205701
    [37]
    ROBERT R. Why is ice slippery? [J]. Physics Today, 2005, 58(12): 50 − 55. doi: 10.1063/1.2169444
    [38]
    COLBECK S C. Pressure melting and ice skating [J]. American Journal of Physics, 1995, 63(10): 888 − 890. doi: 10.1119/1.18028
  • Cited by

    Periodical cited type(1)

    1. 李瀚翔,王正中,李理想,刘铨鸿,江浩源. 基于周向冻缩变形协调的衬砌渠道防冻胀纵缝计算方法. 工程力学. 2024(10): 225-236 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (394) PDF downloads (65) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return