BU Yi-shun, YANG Sheng-qi, HUANG Yan-hua. EXPERIMENTAL STUDY ON THE INFLUENCE OF TEMPERATURE AND DAMAGE DEGREE ON THE PERMEABILITY OF SANDSTONE[J]. Engineering Mechanics, 2021, 38(5): 122-130. DOI: 10.6052/j.issn.1000-4750.2020.06.0374
Citation: BU Yi-shun, YANG Sheng-qi, HUANG Yan-hua. EXPERIMENTAL STUDY ON THE INFLUENCE OF TEMPERATURE AND DAMAGE DEGREE ON THE PERMEABILITY OF SANDSTONE[J]. Engineering Mechanics, 2021, 38(5): 122-130. DOI: 10.6052/j.issn.1000-4750.2020.06.0374

EXPERIMENTAL STUDY ON THE INFLUENCE OF TEMPERATURE AND DAMAGE DEGREE ON THE PERMEABILITY OF SANDSTONE

More Information
  • Received Date: June 10, 2020
  • Revised Date: August 17, 2020
  • Available Online: September 08, 2020
  • The permeability of rock is related to the stability and safety of many underground projects. The temperature, stress, and self-damage in the environment of deep rock structures have a great influence on the permeability. Therefore, it is necessary to study the permeability of damaged rock under different temperatures and stresses. Permeability tests of sandstone of different damage degrees under different confining pressures and real-time temperatures were conducted by GCTS high-temperature and high-pressure dynamic rock triaxial apparatus and automatic gas permeability test system. The results show that the relation between the permeability of sandstone with different damage degrees and confining pressures exhibited a negative growth in the form of a power function. In transiting from a low confining pressure to a high confining pressure, the permeability of the highly damaged sample greatly dropped. The relation between the permeability of rock of different damage degrees and temperature was negative. The permeability of the highly damaged specimen was decreased slowly as the temperature went down. With the increase of the damage degree, the permeability of sandstone decreased slowly and then increased under a low confining pressure, and increased gradually under a high confining pressure. In addition, under low confining pressures, the difference of the permeability between the samples of higher damage degrees was larger.
  • [1]
    Si L L, Li Z H, Yang Y L. Evolution characteristics of gas permeability under multiple factors [J]. Transport in Porous Media, 2018, 127(2): 1 − 18.
    [2]
    Mohammed S B, Mohammed M A. Pressure and temperature effect on petrophysical characteristics: Carbonate reservoir case [C]// SPE Saudi Arabia Section Technical Symposium. Saudi Arabia: Society of Petroleum Endineers, 126045-MS, 2009.
    [3]
    Chae B G, Jeong G C, Kim H J, et al. Changes of permeability characteristics dependent on damage process in granites [J]. Geoences Journal, 2005, 9(4): 339 − 346.
    [4]
    彭苏萍, 屈洪亮, 罗立平, 等. 沉积岩石全应力-应变过程的渗透性试验研究[J]. 煤炭学报, 2000, 25(2): 113 − 116. doi: 10.3321/j.issn:0253-9993.2000.02.001

    Peng Suping, Qu Hongliang, Luo Liping, et al. Experimental study on permeability of complete stress-strain process of sedimentary rocks [J]. Journal of Coal Science, 2000, 25(2): 113 − 116. (in Chinese) doi: 10.3321/j.issn:0253-9993.2000.02.001
    [5]
    王环玲, 徐卫亚, 杨圣奇. 岩石变形破坏过程中渗透率演化规律的试验研究[J]. 岩土力学, 2006, 27(10): 1703 − 1708. doi: 10.3969/j.issn.1000-7598.2006.10.012

    Wang Huanling, Xu Weiya, Yang Shengqi. Experimental study on permeability evolution during rock deformation and failure [J]. Geotechnical Mechanics, 2006, 27(10): 1703 − 1708. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.10.012
    [6]
    俞缙, 穆康, 李宏, 等. 砂岩渗透性演化特性的孔隙率分布细观模拟分析[J]. 工程力学, 2014, 31(11): 124 − 131. doi: 10.6052/j.issn.1000-4750.2013.05.0443

    Yu Jin, Mu Kang, Li Hong, et al. Microscopic simulation analysis of porosity distribution of sandstone permeability evolution characteristics [J]. Engineering Mechanics, 2014, 31(11): 124 − 131. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.0443
    [7]
    盛金昌, 张肖肖, 贾春兰, 等. 温变条件下石灰岩裂隙渗透特性试验研究[J]. 岩石力学与工程学报, 2017, 36(8): 1832 − 1840.

    Sheng Jinchang, Zhang Xiaoxiao, Jia Chunlan, et al. Experimental study on the permeability characteristics of limestone fracture under temperature variation [J]. Journal of Rock Mechanics and Engineering, 2017, 36(8): 1832 − 1840. (in Chinese)
    [8]
    梁冰, 高红梅, 兰永伟, 等. 岩石渗透率与温度关系的理论分析和试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2009 − 2012. doi: 10.3321/j.issn:1000-6915.2005.12.002

    Liang Bing, Gao Hongmei, Lan Yongwei, et al. Theoretical analysis and experimental study on the relationship between rock permeability and temperature [J]. Journal of Rock Mechanics and Engineering, 2005, 24(12): 2009 − 2012. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.12.002
    [9]
    Sun Y Z, Xie L Z, He B, et al. Effects of effective stress and temperature on permeability of sandstone from CO2-plume geothermal reservoir [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8: 819 − 827. doi: 10.1016/j.jrmge.2016.07.004
    [10]
    赵阳生, 万志军, 张渊, 等. 岩石热破裂与渗透性相关规律的试验研究[J]. 岩石力学与工程学报, 2010, 29(10): 1970 − 1976.

    Zhao Yangsheng, Wan Zhijun, Zhang Yuan, et al. Experimental study on the law of thermal fracture and permeability of rocks [J]. Journal of Rock Mechanics and Engineering, 2010, 29(10): 1970 − 1976. (in Chinese)
    [11]
    王小江, 荣冠, 周创兵. 粗砂岩变形破坏过程中渗透性试验研究[J]. 岩石力学与工程学报, 2012, 31(增刊 1): 2940 − 2497.

    Wang Xiaojiang, Rong Guan, Zhou Chuangbing. Experimental study on permeability of coarse sandstone during deformation and failure [J]. Journal of Rock Mechanics and Engineering, 2012, 31(Suppl 1): 2940 − 2497. (in Chinese)
    [12]
    彭苏萍, 孟召平, 王虎, 等. 不同围压下砂岩孔渗规律试验研究[J]. 岩石力学与工程学报, 2003, 22(5): 742 − 746. doi: 10.3321/j.issn:1000-6915.2003.05.010

    Peng Suping, Meng Zhaoping, Wang Hu, et al. Experimental study on pore permeability of sandstone under different confining pressures [J]. Journal of Rock Mechanics and Engineering, 2003, 22(5): 742 − 746. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.05.010
    [13]
    贺玉龙, 杨立中. 温度和有效应力对砂岩渗透率的影响机理研究[J]. 岩石力学与工程学报, 2005, 24(14): 2420 − 2427. doi: 10.3321/j.issn:1000-6915.2005.14.004

    He Yulong, Yang Lizhong. Study on the mechanism of the effect of temperature and effective stress on sandstone permeability [J]. Journal of Rock Mechanics and Engineering, 2005, 24(14): 2420 − 2427. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.14.004
    [14]
    Liu W, Muhammad N, Chen J, et al. Investigation on the permeability characteristics of bedded salt rocks and the tightness of natural gas caverns in such formations [J]. Journal of Natural Gas Ence & Engineering, 2016: 468 − 482.
    [15]
    李顺才, 缪协兴, 陈占清, 等. 承压破碎岩石非Darcy渗流的渗透特性试验研究[J]. 工程力学, 2008, 25(4): 85 − 92.

    Li Shuncai, Miao Xiexing, Chen Zhanqing, et al. Experimental study on permeability characteristics of non Darcy seepage in pressure fractured rock [J]. Engineering Mechanics, 2008, 25(4): 85 − 92. (in Chinese)
    [16]
    李天珍, 李玉寿, 马占国. 破裂岩石非达西渗流的试验研究[J]. 工程力学, 2003, 20(4): 132 − 135.

    Li Tianzhen, Li Yushou, Ma Zhanguo. Experimental study on non Darcy flow in fractured rock [J]. Engineering Mechanics, 2003, 20(4): 132 − 135. (in Chinese)
    [17]
    Wang H X, Wang G, Chen Z X, et al. Deformational characteristics of rock in low permeable reservoir and their effect on permeability [J]. Journal of Petroleum Science and Engineering, 2010, 75(1/2): 240 − 243. doi: 10.1016/j.petrol.2010.11.015
    [18]
    贾朝军, 王环玲, 徐卫亚, 等. 地下水封洞库围岩气体渗透特性及滑脱效应研究[J]. 工程力学, 2015, 32(8): 50 − 57. doi: 10.6052/j.issn.1000-4750.2014.01.0006

    Jia Chaojun, Wang Huanling, Xu Weiya, et al. study on gas permeability characteristics and slippage effect of surrounding rock of underground water sealed caverns [J]. Engineering Mechanics, 2015, 32(8): 50 − 57. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.01.0006
    [19]
    刘亚晨, 蔡永庆, 刘泉声, 等. 岩体裂隙结构面的温度-应力-水力耦合本构关系[J]. 岩土工程学报, 2001, 23(2): 196 − 200.

    Liu Yachen, Cai Yongqing, Liu Quansheng, et al. Temperature-stress-hydraulic coupled constitutive relations of fracture structural planes in rock mass [J]. Journal of Geotechnical Engineering, 2001, 23(2): 196 − 200. (in Chinese)
    [20]
    GB/T 50266−99, 工程岩体试验方法标准 [S]. 北京: 中国计划出版社, 1999.

    GB/T 50266−99, Test method standards for engineering rock masses [S]. Beijing: China Planning Press, 1999. (in Chinese)
    [21]
    Huang Y H, Yang S Q, Dong J P. Experimental study on fracture behaviour of three-flawed sandstone specimens after high-temperature treatments [J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43: 2214 − 2231. doi: 10.1111/ffe.13245
    [22]
    Yang S Q, Huang Y H, Ranjith P G. Failure mechanical and acoustic behavior of brine saturated-sandstone containing two pre-existing flaws under different confining pressures [J]. Engineering Fracture Mechanics, 2018, 193: 108 − 121.
    [23]
    Yang S Q, Tian W L, Derek Elsworth, Wang J G, Fan L F. An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression [J]. Rock Mechanics and Rock Engineering, 2020, 53: 4403 − 4427.
  • Cited by

    Periodical cited type(12)

    1. 朱振南,王殿永,杨圣奇,解经宇,袁益龙,吴廷尧,田文岭,孙博文,田红,陈劲. 不同冷却速率下干热花岗岩渗透率演化特征对比研究. 岩石力学与工程学报. 2024(02): 385-398 .
    2. 王云飞,马勇超,李志超,王立平,荣腾龙. 红砂岩剪切储能与最大剪应变特征试验研究. 工程力学. 2023(02): 66-73 . 本站查看
    3. 周传涛,田文岭,甄治国,杨圣奇,郝占雷,李旭. 含不同层理倾角黄砂岩损伤破裂机理研究. 实验技术与管理. 2023(03): 26-31 .
    4. 王者超,易云佳,闵忠顺,冯浩. 真三向应力作用下深部储层砂岩渗透率各向异性实验研究. 力学学报. 2023(07): 1493-1504 .
    5. 范宇,高新平,宁飞,彭钧亮,李力民,彭欢,陈明君. 基于多周期注采的气藏型地下储气库储层渗流规律. 天然气工业. 2023(10): 103-111 .
    6. 杨圣奇,许帅博,刘振. 深部盐水环境下砂岩力学及渗透特性试验研究. 岩石力学与工程学报. 2022(02): 292-304 .
    7. 马力,罗坤,顾冬. 水利枢纽工程基岩体TM耦合下渗流特性研究. 水利科学与寒区工程. 2022(01): 1-5 .
    8. 孙亚军,张莉,徐智敏,陈歌,赵先鸣,李鑫,高雅婷,张尚国,朱璐璐. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展. 煤炭学报. 2022(01): 423-437 .
    9. 郑少婧,郑得文,孙军昌,李春,武志德,朱思南,刘先山. 气藏型储气库温度敏感性及其对气井注采能力的影响. 石油实验地质. 2022(02): 365-372 .
    10. 朱亮. 围压、温度及损伤程度对隧道围岩渗透率的影响. 资源信息与工程. 2022(02): 111-115 .
    11. 吴燕华. 引水隧洞围岩不同粒径下拉伸力学及渗透试验数据分析. 陕西水利. 2022(06): 167-170 .
    12. 邓岳保,毛伟赟,俞磊,朱瑶宏,谢康和. 考虑温度效应的软土固结蠕变耦合模型. 工程力学. 2022(08): 103-113 . 本站查看

    Other cited types(10)

Catalog

    Article Metrics

    Article views (648) PDF downloads (95) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return