ZHU Zhi-wen, GUI Piao, TENG Hua-jun, Federico Accornero. THE SECONDARY STRESS AT THE DETAILS OF ORTHOTROPIC BRIDGE DECKS INDUCED BY THERMAL GRADIENT UNDER SOLAR RADIATION[J]. Engineering Mechanics, 2022, 39(8): 158-171. DOI: 10.6052/j.issn.1000-4750.2021.04.0313
Citation: ZHU Zhi-wen, GUI Piao, TENG Hua-jun, Federico Accornero. THE SECONDARY STRESS AT THE DETAILS OF ORTHOTROPIC BRIDGE DECKS INDUCED BY THERMAL GRADIENT UNDER SOLAR RADIATION[J]. Engineering Mechanics, 2022, 39(8): 158-171. DOI: 10.6052/j.issn.1000-4750.2021.04.0313

THE SECONDARY STRESS AT THE DETAILS OF ORTHOTROPIC BRIDGE DECKS INDUCED BY THERMAL GRADIENT UNDER SOLAR RADIATION

More Information
  • Received Date: April 24, 2021
  • Revised Date: September 16, 2021
  • Accepted Date: November 25, 2021
  • Available Online: November 25, 2021
  • To investigate the secondary stress at the details of orthotropic steel decks (OSD) induced by thermal gradient in steel box girders, the temperature field of the steel box girder of a self-anchored suspension bridge is measured for multiple times under high environmental temperature and strong solar radiation. The vertical temperature gradient is fitted based on the measured maximum temperature difference between the roof and the floor. After establishing the sectional box girder model in ANSYS with the measured temperature applied on the box-girder surface, the temperature field in the sectional model is obtained. The temperature results on the floor beam agree well with the measured temperature, which validate the thermal analysis. Based on the simulated 24 h temperature field, the thermal stress field in the sectional box girder is first analyzed. Refined stress results are obtained based on a sub-model technology. The thermal stress time histories are determined at the four details around rib-to-floor beam (RF) connection and the cutout detail. It is found that, under strong solar radiation and high environmental temperature, the transverse temperature difference in the steel-deck box girder is not apparent, while the vertical thermal gradient is significant and can be fitted as a four-broken-line function with the maximum temperature difference lower than that of the Eurocode. Significant stress concentration appears at the details of the OSD, particularly at the cutout detail. The cutout detail will be fatigue-free if the thermal stress range resulting from the vertical temperature under solar radiation is considered, or if the stress range resulting from the truck loading is considered. The stress range at the cutout detail, which is jointly produced by the thermal effect of the vertical temperature and by the truck loading, is larger than the constant-amplitude fatigue limit and may contribute to the fatigue crack at the cutout detail.
  • [1]
    Leanne L, Keri L R, Ian G B. Bridge temperature profiles revisited: thermal analyses based on recent meteorological data from Nevada. [J]. Journal of Bridge Engineering, 2020, 25(1): 04019124. doi: 10.1061/(ASCE)BE.1943-5592.0001498
    [2]
    Sushmita B E, Amin A H, Rolands K. The effect of temperature variation on bridges-a literature review [J]. Engineering Structures, 2021, 8(3): 207 − 212.
    [3]
    刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59 − 78.

    Liu Yongjian, Liu Jiang, Zhang Ning. Summary of research on the effect of sunshine temperature on bridge structure [J]. China Civil Engineering Journal, 2019, 52(5): 59 − 78. (in Chinese)
    [4]
    Tong M, Tham L G, Au T K, et al. Numerical modelling for temperature distribution in steel bridges [J]. Computers and Structures, 2001, 79(6): 583 − 593. doi: 10.1016/S0045-7949(00)00161-9
    [5]
    张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14 − 30. doi: 10.3969/j.issn.1001-7372.2017.03.002

    Zhang Qinghua, Bu Yizhi, Li Qiao. Review on fatigue problems of orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2017, 30(3): 14 − 30. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.002
    [6]
    王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69 − 76. doi: 10.3969/j.issn.1001-7372.2013.02.011

    Wang Chunsheng, Fu Bingning, Zhang Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2013, 26(2): 69 − 76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.011
    [7]
    Fu Z, Ji B, Zhang C, et al. Experimental study on the fatigue performance of roof and U-rib welds of orthotropic steel bridge decks [J]. KSCE Journal of Civil Engineering, 2017(3): 1 − 9.
    [8]
    EN-1991-1-5: 2003, Eurocode 1: Actions on structures, Part 1-5: General actions-Therma actions [S]. Swiss: European Committee for Standardization, 2003.
    [9]
    孙君, 李爱群, 丁幼亮. 润扬长江大桥钢箱梁的温度分布监测与分析[J]. 公路交通科技, 2009, 26(8): 94 − 98. doi: 10.3969/j.issn.1002-0268.2009.08.019

    Sun Jun, Li Aiqun, Ding Youliang. Temperature distribution monitoring and analysis of steel box girder of Runyang Yangtze River Bridge [J]. Journal of Highway and Transportation Research and Development, 2009, 26(8): 94 − 98. (in Chinese) doi: 10.3969/j.issn.1002-0268.2009.08.019
    [10]
    张玉平, 杨宁, 李传习. 无铺装层钢箱梁日照温度场分析[J]. 工程力学, 2011, 28(6): 156 − 162.

    Zhang Yuping, Yang Ning, Li Chuangxi. Analysis of sunshine temperature field of steel box girder without pavement [J]. Engineering Mechanics, 2011, 28(6): 156 − 162. (in Chinese)
    [11]
    丁幼亮, 王高新, 周广东, 等. 基于长期监测数据的润扬大桥扁平钢箱梁温度分布特性[J]. 中国公路学报, 2013, 26(2): 94 − 101. doi: 10.3969/j.issn.1001-7372.2013.02.014

    Ding Youliang, Wang Gaoxin, Zhou Guangdong, et al. Temperature distribution characteristics of flat steel box girder of Runyang Bridge based on long-term monitoring data [J]. China Journal of Highway and Transport, 2013, 26(2): 94 − 101. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.014
    [12]
    郑宏利. 寒旱区正交异性板连续钢箱梁桥日照温度场研究[J]. 钢结构, 2013, 26(2): 94 − 101.

    Zheng Hongli. Study on sunshine temperature field of orthotropic slab continuous steel box girder bridge in cold and arid areas [J]. Steel Construction, 2013, 26(2): 94 − 101. (in Chinese)
    [13]
    Zhou L R, Xia Y, Brownjohn M W J, et al. Temperature analysis of a long-span suspension bridge [J]. Journal of Bridge Engineering, 2016, 21(1): 04015027. doi: 10.1061/(ASCE)BE.1943-5592.0000786
    [14]
    Deng Y, Li A Q, Liu Y, et al. Investigation of temperature actions on flat steel box girders of long-span bridges with temperature monitoring data [J]. Advances in Structural Engineering, 2018, 21(4): 2099 − 2113.
    [15]
    Tao T Y, Wang H, Zhu Q X, et al. Long-term temperature field of steel-box girder of a long-span bridge: Measurement and simulation [J]. Engineering Structures, 2021, 236(1): 11924.
    [16]
    刘瑜, 邵旭东. 轻型组合梁桥面板在日照作用下温度梯度效应研究[J]. 公路交通科技, 2015, 32(6): 54 − 61. doi: 10.3969/j.issn.1002-0268.2015.06.009

    Liu Yu, Shao Xudong. Study on temperature gradient effect of light composite beam deck under sunlight [J]. Journal of Highway and Transportation Research and Development, 2015, 32(6): 54 − 61. (in Chinese) doi: 10.3969/j.issn.1002-0268.2015.06.009
    [17]
    邓扬, 李爱群, 丁幼亮. 大跨悬索桥梁端位移与温度的相关性研究及应用[J]. 公路交通科技, 2009, 26(5): 54 − 58. doi: 10.3969/j.issn.1002-0268.2009.05.011

    Deng Yang, Li Aiqun, Ding Youliang. Research and application of correlation between beam end displacement and temperature of long span suspension bridge [J]. Journal of Highway and Transportation Research and Development, 2009, 26(5): 54 − 58. (in Chinese) doi: 10.3969/j.issn.1002-0268.2009.05.011
    [18]
    Liu Y, Qian Z D, Hu J, et al. Temperature behavior and stability analysis of orthotropic steel bridge deck during gussasphalt pavement paving [J]. Journal of Bridge Engineering, 2018, 23(1): 04017117. doi: 10.1061/(ASCE)BE.1943-5592.0001163
    [19]
    王力, 牛思胜, 刘世忠, 等. 新型波形钢腹板组合箱梁桥温度效应研究[J]. 铁道科学与工程学报, 2020, 17(8): 2021 − 2029.

    Wang Li, Niu Sisheng, Liu Shizhong, et al. Research on thermal effect of new-pattern corrugated steel web composite box girder bridge [J]. Journal of Railway Science and Engineering, 2020, 17(8): 2021 − 2029. (in Chinese)
    [20]
    Zhu Z W, Xiang Z. Fatigue cracking investigation on diaphragm cutout in a self-anchored suspension bridge with orthotropic steel deck [J]. Structure and Infrastructure Engineering, 2019, 15(10): 1279 − 1291. doi: 10.1080/15732479.2019.1609528
    [21]
    王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82 − 95. doi: 10.3969/j.issn.1001-7372.2017.03.009

    Wang Chunsheng, Zhai Musai, Tang Youming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck [J]. China Journal of Highway and Transport, 2017, 30(3): 82 − 95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.009
    [22]
    王春生, 翟慕赛, Houankpo T O N. 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37(8): 102 − 111. doi: 10.6052/j.issn.1000-4750.2019.09.0518

    Wang Chunsheng, Zhai Musai, Houankpo T O N. Fatigue strength of typical details in orthotropic steel bridge deck [J]. Engineering Mechanics, 2020, 37(8): 102 − 111. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0518
    [23]
    黄云, 张清华, 郭亚文, 等. 钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J]. 工程力学, 2019, 36(3): 203 − 213, 223. doi: 10.6052/j.issn.1000-4750.2017.12.0973

    Huang Yun, Zhang Qinghua, Guo Yawen, et al. Research on surface defects and fatigue effects at rib-to-crossbeam welded joints of orthotropic steel bridge decks [J]. Engineering Mechanics, 2019, 36(3): 203 − 213, 223. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0973
    [24]
    赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29(7): 52 − 61. doi: 10.3969/j.issn.1001-7372.2016.07.007

    Zhao Renda, Wang Yongbao. Study on boundary conditions of temperature field of concrete box girder under sunlight [J]. China Journal of Highway and Transport, 2016, 29(7): 52 − 61. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.07.007
    [25]
    陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2018.

    Tao Wenquan. Heat transfer [M]. 5rd ed. Beijing: Higher Education Press, 2018. (in Chinese)
    [26]
    AASHTO, LRFD bridge design specifications [S]. Washington D. C: American Association of State Highway and Transportation Officials, 2014.
    [27]
    祝志文, 黄炎, 向泽. 货运繁重公路正交异性板钢桥弧形切口的疲劳性能[J]. 中国公路学报, 2017, 30(3): 104 − 112. doi: 10.3969/j.issn.1001-7372.2017.03.011

    Zhu Zhiwen, Huang Yan, Xiang Ze. Fatigue performance of floorbeam cutout detail of orthotropic steel bridge on heavy freight transportation highway [J]. China Journal of Highway and Transport, 2017, 30(3): 104 − 112. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.011
    [28]
    王石磊, 齐法琳, 柯在田, 等. 环氧沥青铺装对钢桥面板受力影响试验研究[J]. 工程力学, 2020, 37(10): 145 − 154. doi: 10.6052/j.issn.1000-4750.2019.11.0690

    Wang Shilei, Qi Falin, Ke Zaitian, et al. Experimental study on the effect of an epoxy asphalt concrete pavement on an orthotropic steel deck [J]. Engineering Mechanics, 2020, 37(10): 145 − 154. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0690
    [29]
    FHWA-IF-12-027, Manual for design, construction, and maintenance of orthotropic steel deck bridges [S]. Washington: Federal Highway Administration (FHWA), 2012.
    [30]
    Hobbacher A F. The new IIW recommendations for fatigue assessment of welded joints and components--a comprehensive code recently updated [J]. International Journal of Fatigue, 2009, 31(1): 50 − 58.
    [31]
    Downing S, Socie D F. Simple rainflow counting algorithms [J]. International Journal of Fatigue, 1982, 4(1): 31 − 40. doi: 10.1016/0142-1123(82)90018-4
  • Related Articles

    [1]LI Peng, LI Dan-yu, LI Bo, LI Chen, YANG Qing-shan. RESEARCH ON SPATIOTEMPORAL EVOLUTION CHARACTERISTICS OF DOWNBURSTS UPON FILED MEASUREMENT[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.03.0199
    [2]YANG Hao, LUO Shuai, XING Guo-ran, WANG Wei. FINITE ELEMENT ANALYSIS OF BAR AND BEAM COMPOSITE STRUCTURES[J]. Engineering Mechanics, 2019, 36(S1): 154-157,169. DOI: 10.6052/j.issn.1000-4750.2018.05.S029
    [3]HE Tao, LI Zi-ran, WANG Yang. FINITE ELEMENT ANALYSIS FOR SLIDING ABRASION OF TREAD BLOCKS OF RADIAL TIRE[J]. Engineering Mechanics, 2010, 27(7): 237-243,.
    [4]ZHAO Jie, NIE Jian-guo. NONLINEAR FINITE ELEMENT ANALYSIS OF STEEL PLATE-CONCRETE COMPOSITE BEAMS[J]. Engineering Mechanics, 2009, 26(4): 105-112.
    [5]SHI Gang, SHI Yong-jiu, WANG Yuan-qing. NONLINEAR FINITE ELEMENT ANALYSIS OF END-PLATE CONNECTIONS IN STEEL FRAMES[J]. Engineering Mechanics, 2008, 25(12): 79-085.
    [6]LU Xin-zheng, YE Lie-ping, TENG Jin-guang, ZHUANG Jiang-bo, JIANG Jian-jing. MESO-SCALE FINITE ELEMENT ANALYSIS OF FRP-TO-CONCRETE BOND BEHAVIOR[J]. Engineering Mechanics, 2006, 23(5): 74-82.
    [7]Wang Xinmin. THE FINITE ELEMENT ANALYSIS FOR LARGE DEFLECTION OF SPACE TRUSSES[J]. Engineering Mechanics, 1997, 14(4): 98-103.
    [8]Lou Yu, Ding Dajun, Wei Lian. SELECTION OF FINITE ELEMENT MODEL IN THE ANALYSIS OF GIRDER TRANSFER STORY[J]. Engineering Mechanics, 1997, 14(2): 23-27.
    [9]Zhang Xiaowu, Wang Xiaojun, Li Yongchi, Tang Ruifeng. FINITE ELEMENT ANALYSIS OF THE IMPACT MADE BY A PROJECTILE WITH HIGH VELOCITY[J]. Engineering Mechanics, 1993, 10(3): 124-132.
    [10]Yang Guoping, Xie Bin, Cui Jinghao, Wu junJian, Xing Qiushun. THE MEASUREMENT AND FINITE ELEMENT ANALYSIS OF STRESS FIELD IN LOOSE GREEN SAND UNDER STATIC COMPACTION[J]. Engineering Mechanics, 1992, 9(2): 107-117.
  • Cited by

    Periodical cited type(21)

    1. 李成玉,杨草原,贾良玖,陈焰周. 曲线隅撑和柱端滑移摩擦节点单层钢框架的抗震性能研究. 工程力学. 2025(03): 113-127 . 本站查看
    2. 韩重庆,杨瑞丰,李向民,冷予冰,张富文,许清风. 装配式矩形钢管混凝土柱-钢梁侧板连接节点抗震性能研究. 建筑结构学报. 2024(04): 50-60 .
    3. 梁刚,李淑敏,杨佳男,刘云贺,卢俊龙,田庆. 梁柱节点弯剪型可更换耗能件抗震性能试验研究. 工程科学与技术. 2024(05): 221-229 .
    4. 韦古强,胡从川,王越,刘广东,翟钱. 装配式混凝土柱脚节点可替换耗能构件抗震性能研究. 甘肃科学学报. 2024(06): 37-43 .
    5. 冯玉龙,韦明途,种迅,蒋庆. 屈曲约束翼缘盖板连接的钢框架节点滞回性能研究. 建筑结构. 2023(05): 110-118 .
    6. 丁发兴,许云龙,王莉萍,尹国安,余志武. 拉筋对两层两跨钢-混凝土组合框架结构抗震性能的影响. 工程力学. 2023(04): 58-70 . 本站查看
    7. 潘建荣,陈鹏,胡方鑫,王湛. 可更换屈曲约束耗能板的钢框架梁柱节点抗震性能试验研究. 建筑结构学报. 2023(S2): 180-187 .
    8. 郑宏,苏耀烜,尚永芳,刘智超,江力强. 装配式可更换梁段腹板开孔削弱型节点滞回性能. 建筑科学与工程学报. 2022(01): 25-35 .
    9. 乔立强. 关于钢结构建筑中梁柱节点的研究综述. 城市建筑. 2022(16): 175-178 .
    10. 杜辉波,程欣,张超,陈以一. 薄柔H形截面双向压弯钢构件极限承载力研究. 工程力学. 2022(09): 191-203 . 本站查看
    11. 黄炜,胡高兴. 可恢复预制装配式RC梁柱节点抗震性能研究. 工程力学. 2022(12): 165-176+189 . 本站查看
    12. 李成玉,胡艳平,王军洁,贺东兵,陈焰周. 柱端设置盖板式滑移摩擦节点H型钢柱抗震稳定性研究. 世界地震工程. 2022(04): 83-94 .
    13. 黄彬辉,李元齐. 装配式钢结构梁柱节点承载性能研究进展. 结构工程师. 2021(01): 228-238 .
    14. 王凯,王德斌,莫德秀,张皓. 摩擦软钢节点阻尼器抗震及抗倒塌性能. 科学技术与工程. 2021(09): 3733-3739 .
    15. Kim Eng Chouery,樊奎,贾良玖. 对称和非对称型摩擦耗能连接的抗震性能与设计方法研究现状. 工程力学. 2021(05): 22-37+49 . 本站查看
    16. 叶建峰,郑莲琼,颜桂云,薛潘荣,马永超. 装配式可更换耗能铰滞回性能试验研究. 工程力学. 2021(08): 42-54 . 本站查看
    17. 杨子仪,叶茂,刘建武,袁金秀. 新型装配式塑性铰节点的设计及数值模拟. 应用力学学报. 2021(04): 1423-1430 .
    18. 王萌,孙毅,杨璐. 配置低屈服点角钢连接件的钢框架节点损伤控制及优化设计. 建筑结构学报. 2021(12): 76-89 .
    19. 石若利,潘志成,李其伦,谢建斌. 钢框架结构梁柱节点抗震加固有限元分析. 扬州大学学报(自然科学版). 2021(06): 70-78 .
    20. 谢鲁齐,吴京,章锦洋,刘晨昱. 可更换耗能连接力学机理及变形性能研究. 工程力学. 2020(06): 186-195 . 本站查看
    21. 叶冬晨,陈以一. 基于分块组合法的多孔板塑性极限状态分析. 工程力学. 2019(06): 36-48 . 本站查看

    Other cited types(27)

Catalog

    Article Metrics

    Article views (400) PDF downloads (69) Cited by(48)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return