DING Fa-xing, XU Yun-long, WANG Li-ping, YIN Guo-an, YU Zhi-wu. PSEUDO-STATIC TESTS OF STIRRUP-CONFINED SQUARE CFST TWO-STORY TWO-SPAN COMPOSITE FRAME STRUCTURE[J]. Engineering Mechanics, 2023, 40(4): 58-70. DOI: 10.6052/j.issn.1000-4750.2021.09.0693
Citation: DING Fa-xing, XU Yun-long, WANG Li-ping, YIN Guo-an, YU Zhi-wu. PSEUDO-STATIC TESTS OF STIRRUP-CONFINED SQUARE CFST TWO-STORY TWO-SPAN COMPOSITE FRAME STRUCTURE[J]. Engineering Mechanics, 2023, 40(4): 58-70. DOI: 10.6052/j.issn.1000-4750.2021.09.0693

PSEUDO-STATIC TESTS OF STIRRUP-CONFINED SQUARE CFST TWO-STORY TWO-SPAN COMPOSITE FRAME STRUCTURE

More Information
  • Received Date: September 04, 2021
  • Revised Date: December 10, 2021
  • Accepted Date: December 16, 2021
  • Available Online: December 16, 2021
  • An experimental study on two two-story-two-span CFST frames with or without internal stirrups subjected to horizontal cyclic loading was conducted. The frame specimens were scaled down to 2∶5. The objective of this study is to investigate the influence of stirrups welded inside the CFST columns on the aseismic performance of the frames. Numerical analysis was carried out using ABAQUS, and the finite element model was verified by comparing the test results. Based on the FE models, the influence of the equivalent stirrup ratio was investigated. The experimental and numerical analysis results indicate that the stirrups reduce the slippage between steel tube and infilled concrete and, strengthen the confinement effect of steel tube on infilled concrete at same time. Moreover, the flexural bearing capacity and energy dissipation capacity of the frames were improved. The stirrups also change the ratio of line stiffness and flexural bearing capacity between beam and column indirectly. Compared with the conventional frames, the frames designed using ‘strong columns’ can improve the stiffness, bearing capacity and energy dissipation capacity of the frames by more than 70%, 20% and 50%, respectively.
  • [1]
    MORINO S, KAWAGUCHI J, YASUZAKI C, et al. Behavior of concrete filled steel tubular three-dimensional subassemblages [C]// Composite Construction in Steel and Concrete II. Potosi, USA, ASCE, 1992: 726 − 741.
    [2]
    KAWAGUCHI J, MORINO S, SUGIMOTO T. Elasto-plastic behavior of concrete-filled steel tubular frames [C]// Composite Construction in Steel and Concrete III. Irsee, Germany, ASCE, 1996: 272 − 281.
    [3]
    KAWAGUCHI J, MORINO S, SUGIMOTO T, et al. Experimental study on structural characteristics of portal frames consisting of square CFT columns [C]// Composite Construction in Steel and Concrete IV. Banff, Canada, ASCE, 2000: 725 − 733.
    [4]
    HAN L H, WANG W D, ZHAO X L. Behavior of steel beam to concrete-filled SHS column frames: finite element model and verifications [J]. Engineering Structures, 2008, 30: 1647 − 1658. doi: 10.1016/j.engstruct.2007.10.018
    [5]
    WANG W D, HAN L H, ZHAO X L. Analytical behavior of frames with steel beams to concrete-filled steel tubular column [J]. Journal of Constructional Steel Research, 2009, 65: 497 − 508. doi: 10.1016/j.jcsr.2008.11.002
    [6]
    NIE J G, HUANG Y, YI W J, et al. Seismic behavior of CFRSTC composite frames considering slab effects [J]. Journal of Constructional Steel Research, 2012, 68: 165 − 175. doi: 10.1016/j.jcsr.2011.08.006
    [7]
    DING F X, YIN G A, JIANG L Z, et al. Composite frame of circular CFST column to steel-concrete composite beam under lateral cyclic loading [J]. Thin-Walled Structures, 2018, 122: 137 − 146. doi: 10.1016/j.tws.2017.10.022
    [8]
    王冬花, 王静峰, 李贝贝, 等. 装配式钢管混凝土组合框架的抗震性能试验研究[J]. 土木工程学报, 2017, 50(8): 20 − 28.

    WANG Donghua, WANG Jingfeng, LI Beibei, et al. Experimental study on seismic behavior of prefabricated CFST composite frames [J]. China Civil Engineering Journal, 2017, 50(8): 20 − 28. (in Chinese)
    [9]
    ZHANG J C, HUANG Y S, CHEN Y, et al. Numerical and experimental study on seismic behavior of concrete-filled T-section steel tubular columns and steel beam planar frames [J]. Journal of Central South University, 2018, 25: 1774 − 1785. doi: 10.1007/s11771-018-3868-7
    [10]
    WANG J F, LI B B, WANG D H, et al. Cyclic testing of steel beam blind bolted to CFST column composite frames with SBTD concrete slabs [J]. Engineering Structures, 2017, 148: 293 − 311. doi: 10.1016/j.engstruct.2017.06.065
    [11]
    WANG J F, PAN X B, PENG X. Pseudo-dynamic tests of assembly blind bolted composite frames to CFST columns [J]. Journal of Constructional Steel Research, 2017, 139: 83 − 100. doi: 10.1016/j.jcsr.2017.08.013
    [12]
    TSAI K C, HSIAO P C, WANG K J, et al. Pseudo-dynamic test of a full-scale CFT/BRB frame—part 1: Specimen design, experiment and analysis [J]. Earthquake Engineering and Structural Dynamics, 2008, 37: 1081 − 1098. doi: 10.1002/eqe.804
    [13]
    TSAI K C, HSIAO P C. Pseudo-dynamic test of a full-scale CFT/BRB frame—part 2: Seismic performance of buckling-restrained braces and connections [J]. Earthquake Engineering and Structural Dynamics, 2008, 37: 1099 − 1115. doi: 10.1002/eqe.803
    [14]
    王文达, 王军. 远场地震作用下钢管混凝土组合框架的地震反应分析[J]. 工程力学, 2012, 29(增刊 1): 124 − 129. doi: 10.6052/j.issn.1000-4750.2011.11.S026

    WANG Wenda, WANG Jun. Seismic response of composite frame with CFST columns under far-field ground motion [J]. Engineering Mechanics, 2012, 29(Suppl 1): 124 − 129. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.11.S026
    [15]
    HAN L H, LI W, YANG Y F. Seismic behaviour of concrete-filled steel tubular frame to RC shear wall high-rise mixed structures [J]. Journal of Constructional Steel Research, 2009, 65: 1249 − 1260. doi: 10.1016/j.jcsr.2008.12.005
    [16]
    DING F X, LUO L, WANG L P, et al. Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns [J]. Journal of Constructional Steel Research, 2018, 144: 135 − 152. doi: 10.1016/j.jcsr.2018.01.017
    [17]
    丁发兴, 刘怡岑, 吕飞, 等. 拉筋接触方式对高轴压比钢管混凝土柱抗震性能影响试验研究[J]. 建筑结构学报, 2021, 42(9): 62 − 72. doi: 10.14006/j.jzjgxb.2019.0597

    DING Faxing, LIU Yicen, LYU Fei, et al. Experimental study on influence of contact mode between stirrup and steel tube on seismic performance of stirrup-confined concrete-filled steel tube columns under high axial compression ratio [J]. Journal of Building Structures, 2021, 42(9): 62 − 72. (in Chinese) doi: 10.14006/j.jzjgxb.2019.0597
    [18]
    GB 50936−2014, 钢管混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2014.

    GB 50936−2014, Technical code for concrete filled steel tubular structures [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [19]
    GB 50017−2017, 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2017.

    GB 50017−2017, Standard for design of steel structures [S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [20]
    GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [21]
    王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151 − 163. doi: 10.6052/j.issn.1000-4750.2017.09.0743

    WANG Meng, KE Xiaogang, WU Zhaozhang. Seismic behavior of steel frame connections with replaceable high ductility and energy dissipation components [J]. Engineering Mechanics, 2018, 35(12): 151 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.0743
    [22]
    付波, 王彦超, 童根树. 矩形钢管混凝土柱-H形钢梁外顶板式节点抗震性能试验研究[J]. 工程力学, 2020, 37(7): 125 − 137. doi: 10.6052/j.issn.1000-4750.2019.08.0474

    FU Bo, WANG Yanchao, TONG Genshu. Experimental study on the seismic behavior of CFST rectangular column to h-section steel beam connections with external stiffeners [J]. Engineering Mechanics, 2020, 37(7): 125 − 137. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0474
    [23]
    黄育琪, 郝际平, 樊春雷, 等. WCFT柱-钢梁节点抗震性能试验研究[J]. 工程力学, 2020, 37(12): 34 − 42. doi: 10.6052/j.issn.1000-4750.2020.02.0092

    HUANG Yuqi, HAO Jiping, FAN Chunlei, et al. Experimental research on seismic performance of WCFT column-steel beam joints [J]. Engineering Mechanics, 2020, 37(12): 34 − 42. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0092
    [24]
    GB/T 2975−2018, 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 2018.

    GB/T 2975−2018, Steel and steel products-Location and preparation of samples and test pieces for mechanical testing [S]. Beijing: Standards Press of China, 2018. (in Chinese)
    [25]
    GB/T 228−2010, 金属材料拉伸试验第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.

    GB/T 228−2010, Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: Standards Press of China, 2010. (in Chinese)
    [26]
    GB/T 50081−2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.

    GB/T 50081−2019, Standard for test methods of concrete physical and mechanical properties [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [27]
    JGJ/T 101−2015, 建筑抗震试验规程[S]. 北京: 中国建筑工业出版社, 2015.

    JGJ/T 101−2015, Specification for seismic test of buildings [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [28]
    XU W, HAN L H, LI W. Seismic performance of concrete-encased column base for hexagonal concrete-filled steel tube: experimental study [J]. Journal of Constructional Steel Research, 2016, 121: 352 − 369. doi: 10.1016/j.jcsr.2016.02.003
    [29]
    DING F X, CAO Z Y, LYU F, et al. Practical design equations of the axial compressive capacity of circular CFST stub columns based on finite element model analysis incorporating constitutive models for high-strength materials [J]. Case Studies in Construction Materials, 2022, 16: e01115.
    [30]
    丁发兴, 王恩, 吕飞, 等. 考虑组合作用的钢-混凝土组合梁抗剪承载力[J]. 工程力学, 2021, 38(7): 86 − 98. doi: 10.6052/j.issn.1000-4750.2020.07.0479

    DING Faxing, WANG En, LYU Fei, et al. Composite action of steel-concrete composite beams under lateral shear force [J]. Engineering Mechanics, 2021, 38(7): 86 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0479
    [31]
    DING F X, YIN G A, WANG L P, et al. Seismic performance of a non-through-core concrete between concrete-filled steel tubular columns and reinforced concrete beams [J]. Thin-Walled Structures, 2017, 110: 14 − 26. doi: 10.1016/j.tws.2016.10.014
    [32]
    谷利雄, 丁发兴, 张鹏, 等. 钢-混凝土组合简支梁滞回性能非线性有限元分析[J]. 工程力学, 2013, 30(1): 301 − 306.

    GU Lixiong, DING Faxing, ZHANG Peng, et al. Nonlinear finite element analysis for hysteresis behaviors of simply supported steel-concrete composite beam [J]. Engineering Mechanics, 2013, 30(1): 301 − 306. (in Chinese)
  • Cited by

    Periodical cited type(5)

    1. 丁发兴,吴霞,吕飞,王文君,孙浩,SADAT Said Ikram,许云龙,王恩,王莉萍,余志武. 多类混凝土损伤比强度理论及塑性-损伤模型研究进展与应用. 铁道科学与工程学报. 2025(02): 690-711 .
    2. 孙敏,朱远恒,高鹏真,李振东,方有珍. 多降雨环境下锈蚀钢筋混凝土柱装配节点抗震性监测. 吉林大学学报(工学版). 2024(12): 3545-3551 .
    3. 徐超,李家富,丁发兴,尚志海,闫思凤,辛立娟,许云龙. 增强约束钢管混凝土框架-核心筒结构抗震性能. 钢结构(中英文). 2023(12): 39-47 .
    4. 丁发兴,许云龙,王莉萍,吕飞,段林利,余志武. 钢-混凝土组合结构抗震性能研究进展. 钢结构(中英文). 2023(12): 1-26 .
    5. 许云龙,丁发兴,吕飞,潘志成,罗靓,尹国安,陈明,余志武. 多维地震下钢管混凝土柱-组合梁框架结构体系抗震性能分析. 钢结构(中英文). 2023(12): 27-38 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (492) PDF downloads (104) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return