CHENG Hu, LI Hong-nan, WANG Dong-sheng, LI Chao, FU Xing. SEISMIC PERFORMANCE ANALYSIS OF REINFORCED CONCRETE BRIDGE COLUMN CONSIDERING BOND DETERIORATION CAUSED BY CHLORIDE ION INDUCED CORROSION[J]. Engineering Mechanics, 2017, 34(12): 48-58. DOI: 10.6052/j.issn.1000-4750.2016.08.0584
Citation: CHENG Hu, LI Hong-nan, WANG Dong-sheng, LI Chao, FU Xing. SEISMIC PERFORMANCE ANALYSIS OF REINFORCED CONCRETE BRIDGE COLUMN CONSIDERING BOND DETERIORATION CAUSED BY CHLORIDE ION INDUCED CORROSION[J]. Engineering Mechanics, 2017, 34(12): 48-58. DOI: 10.6052/j.issn.1000-4750.2016.08.0584

SEISMIC PERFORMANCE ANALYSIS OF REINFORCED CONCRETE BRIDGE COLUMN CONSIDERING BOND DETERIORATION CAUSED BY CHLORIDE ION INDUCED CORROSION

More Information
  • Received Date: August 02, 2016
  • Revised Date: December 06, 2016
  • The seismic performance of RC structures declines due to the chloride ion induced corrosion in their life cycles. By means of the software OpenSees, numerical models were built to simulate the test results of a full-scale RC bridge column tested on the shake table and some corroded reduced-scale RC columns tested under quasi-static loadings. According to existing investigations on the model of chloride ion induced corrosion, the degradation of the mechanical property of longitudinal reinforcement and bond deterioration were both considered in the numerical models of corroded RC columns. Then fragility analysis was performed based on the probabilistic seismic demand model for three cases of full-scale RC bridge columns, considering different percentage of the corroded mass relative to the initial mass of the longitudinal reinforcement. The results show that:the numerical model established by parallel connecting the zero-length section element to the nonlinear beam-column element can simulate the test results effectively; when the corroded mass of the longitudinal reinforcement is minor, the maximum top displacement of the column is not sensitive to the degradation of the mechanical property of longitudinal reinforcement, but the maximum base shear force and moment decrease obviously; When the damage degree of the column is slight, the corrosion of longitudinal reinforcement affects the structural seismic performance negligibly. When the damage condition becomes severer, the effect of the corrosion of longitudinal reinforcement is more obvious. A minor corrosion of longitudinal reinforcement increases the damage probability observably. The study can provide a reference for the seismic design of reinforced concrete structures when considering the performance degradation in the life cycle.
  • [1]
    Simon J, Bracci J M, Gardoni P. Seismic response and fragility of deteriorated reinforced concrete bridges[J]. Journal of Structural Engineering, 2010, 136(10):1273-1281.
    [2]
    Ghosh J, Padgett J E. Aging considerations in the development of time-dependent seismic fragility curves[J]. Journal of Structural Engineering, 2011, 136(12):1497-1511.
    [3]
    Choe D E, Gardoni P, Rosowsky D, et al. Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion[J]. Reliability Engineering System Safety, 2008, 93(3):383-393.
    [4]
    Biondini F, Camnasio E, Palermo A. Lifetime seismic performance of concrete bridges exposed to corrosion[J]. Structure and Infrastructure Engineering, 2014, 10(7):880-900.
    [5]
    Dong Y, Frangopol D M, Saydam D. Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(10):1451-1467.
    [6]
    Guo A, Yuan W, Lan C, et al. Time-dependent seismic demand and fragility of deteriorating bridges for their residual service life[J]. Bulletin of Earthquake Engineering, 2015, 13(8):2389-2409.
    [7]
    李立峰, 吴文朋, 胡思聪, 刘守苗. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1):163-170. Li Lifeng, Wu Wenpeng, Hu Sicong, Liu Shoumiao. Time-dependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion[J]. Engineering Mechanics, 2016, 33(1):163-170. (in Chinese)
    [8]
    Wu W, Li L, Shao X. Seismic assessment of medium-span concrete cable-stayed bridges using the component and system fragility functions[J]. Journal of Bridge Engineering, 2016, 21(6):04016027.
    [9]
    李宁, 李杨, 李忠献. 基于向量IM的钢筋混凝土桥墩地震易损性分析[J]. 工程力学, 2016, 33(1):58-63, 71. Li Ning, Li Yang, Li Zhongxian. Seismic vulnerability analysis of reinforced concrete bridge piers based on vector-valued intensity measure[J]. Engineering Mechanics, 2016, 33(1):58-63, 71. (in Chinese)
    [10]
    成虎, 李宏男, 王东升. 弯曲破坏型钢筋混凝土桥墩地震变形成分及影响因素[J]. 防灾减灾工程学报, 2016, 36(1):62-68. Cheng Hu, Li Hongnan, Wang Dongsheng. Seismic deformation components and influential factors of RC bridge columns suffering from flexural failure[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1):62-68. (in Chinese)
    [11]
    Lehman D E, Moehle J P. Seismic performance of well-confined concrete bridge columns[M]. University of California, Berkeley, California:Pacific Earthquake Engineering Research Center, 2000.
    [12]
    朱杰. 受腐蚀钢筋混凝土墩柱的性能退化研究[D]. 上海:上海交通大学, 2013. Zhu Jie. Degradation of capacity of the corroded reinforced concrete columns[D]. Shanghai:Shanghai Jiao Tong University, 2013. (in Chinese)
    [13]
    Yang S Y, Song X B, Jia H X, et al. Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar[J]. Construction and Building Materials, 2016, 121:319-327.
    [14]
    李超, 李宏男. 考虑氯离子腐蚀作用的近海桥梁结构全寿命抗震性能评价[J]. 振动与冲击, 2014, 33(11):70-77. Li Chao, Li Hongnan. Life-cycle aseismic performance evaluation of offshore bridge structures considering chlorides ions corrosion effect[J]. Journal of Vibration and Shock, 2014, 33(11):70-77. (in Chinese)
    [15]
    Ma Y F, Zhang J R, Wang L, et al. Probabilistic prediction with Bayesian updating for strength degradation of RC bridge beams[J]. Structural Safety, 2013, 44:102-109.
    [16]
    Zhang W P, Song X B, Gu X L, et al. Tensile and fatigue behavior of corroded rebars[J]. Construction and Building Materials, 2012, 34:409-417.
    [17]
    Du Y G, Clark L A, Chan A H. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3):135-147.
    [18]
    Zhao J, Sritharan S. Modeling of Strain Penetration Effects in Fiber-Based Analysis of Reinforced Concrete Structures Concrete Structures[J]. ACI structural journal, 2007, 104(2):133-141.
    [19]
    潘志宏, 李爱群, 孙义刚. 反复荷载下锈蚀黏结退化的RC结构数值模拟[J]. 中国矿业大学学报, 2010, 39(3):362-367. Pan Zhihong, Li Aiqun, Sun Yigang. Numerical simulation of reinforced concrete structures under cyclic loads:the effects of bond deterioration due to reinforcement corrosion[J]. Journal of China University of Mining & Technology, 2010, 39(3):362-367. (in Chinese)
    [20]
    袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋混凝土梁的结构性能退化模型[J]. 土木工程学报, 2001, 34(3):47-52, 96. Yuan Yingshu, Jia Fuping, Cai Yue. The structural behavior deterioration model for corroded reinforced concrete beams[J]. China Civil Engineering Journal, 2001, 34(3):47-52, 96. (in Chinese)
    [21]
    Qu Z. Predicting nonlinear response of an RC bridge pier subjected to shake table motions[C]//Proceedings 9th International Conference on Urban Earthquake Engineering (9CUEE), Tokyo, Japan, 2012:1717-1724.
    [22]
    Cheng H, Li H N, Wang D S, et al. Research on the influencing factors for residual displacements of RC bridge columns subjected to earthquake loading[J]. Bulletin of Earthquake Engineering, 2016, 14(8):2229-2257.
    [23]
    于晓辉, 吕大刚. 基于云图-条带法的概率地震需求分析与地震易损性分析[J]. 工程力学, 2016, 33(6):68-76. Yu Xiaohui, Lü Dagang. Probabilistic seismic demand analysis and seismic fragility analysis based on a cloud-stripe method[J]. Engineering Mechanics, 2016, 33(6):68-76. (in Chinese)
    [24]
    Baker J W, Lin T, Shahi S K, et al. New ground motion selection procedures and selected motions for the PEER transportation research program[R]. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 2011.
    [25]
    马海滨, 卓卫东, 林杰, 邢文杰, 谷音, 孙颖. 基于云图法的规则桥梁概率地震需求模型[J]. 工程力学, 2016, 33(增刊1):119-124. Ma Haibin, Zhuo Weidong, Lin Jie, Xing Wenjie, Gu Yin, Sun Ying. A probabilistic seismic demand model for regular highway bridges by cloud approach[J]. Engineering Mechanics, 2016, 33(Suppl 1):119-124. (in Chinese)
    [26]
    Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002, 128(4):526-533.
    [27]
    Padgett J E, Nielson B G, DesRoches R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(5):711-725.
    [28]
    Federal Emergency Management Agency.HAZUS99 User's Manual[M]. Washington D C:Federal Emergency Management Agency, 1999:202-208.
    [29]
    Choi E, DesRoches R, Nielson B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures, 2004, 26(2):187-199.
    [30]
    Hwang H, 刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报, 2004, 37(6):47-51. Hwang H, Liu Jingbo. Seismic fragility analysis of reinforced concrete bridges[J]. China Civil Engineering Journal, 2004, 37(6):47-51. (in Chinese)
  • Related Articles

    [1]LU Yan, XU Yu-hao, HAN Qing-hua, WANG Shu-yu. SEISMIC FRAGILITY ANALYSIS AND RESILIENCE EVALUATION OF GYMNASIUM[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0723
    [2]Lü Da-gang, LIU Yang, YU Xiao-hui. SEISMIC FRAGILITY MODELS AND FORWARD-BACKWARD PROBABILISTIC RISK ANALYSIS IN SECOND-GENERATION PERFORMANCE-BASED EARTHQUAKE ENGINEERING[J]. Engineering Mechanics, 2019, 36(9): 1-11,24. DOI: 10.6052/j.issn.1000-4750.2018.07.ST08
    [3]WU Di, XIONG Yan. TEST-BASED PROBABILITSTIC SEISMIC FRAGILITY ANALYSIS OF DIAGRID-CORE TUBE STRUCTURES[J]. Engineering Mechanics, 2018, 35(11): 155-161,171. DOI: 10.6052/j.issn.1000-4750.2017.08.0631
    [4]YU Xiao-hui, LÜ Da-gang. PROBABILISTIC SEISMIC DEMAND ANALYSIS AND SEISMIC FRAGILITY ANALYSIS BASED ON A CLOUD-STRIPE METHOD[J]. Engineering Mechanics, 2016, 33(6): 68-76. DOI: 10.6052/j.issn.1000-4750.2014.11.0998
    [5]LI Li-feng, WU Wen-peng, HU Si-cong, LIU Shou-miao. TIME-DEPENDENT SEISMIC FRAGILITY ANALYSIS OF HIGH PIER BRIDGE BASED ON CHLORIDE ION INDUCED CORROSION[J]. Engineering Mechanics, 2016, 33(1): 163-170. DOI: 10.6052/j.issn.1000-4750.2014.06.0530
    [6]SHEN Guo-yu, YUAN Wan-cheng, PANG Yu-tao. BRIDGE SEISMIC FRAGILITY ANALYSIS BASED ON NATAF TRANSFORMATION[J]. Engineering Mechanics, 2014, 31(6): 93-100. DOI: 10.6052/j.issn.1000-4750.2012.12.0959
    [7]WANG Qi-ang, WU Zi-yan, JIA Zhao-ping. MULTI-DIMENSIONAL FRAGILITY ANALYSIS OF BRIDGE SYSTEM UNDER EARTHQUAKE[J]. Engineering Mechanics, 2013, 30(10): 192-198. DOI: 10.6052/j.issn.1000-4750.2012.06.0464
    [8]ZHENG Kai-feng, CHEN Li-bo, ZHUANG Wei-lin, MA Hong-sheng, ZHANG Jian-jing. Bridge Vulnerability Analysis Based on Probabilistic Seismic Demand Models[J]. Engineering Mechanics, 2013, 30(5): 165-171. DOI: 10.6052/j.issn.1000-4750.2012.01.0027
    [9]WU Qiao-yun, ZHU Hong-ping, Fan Jian. PERFORMANCE-BASED SEISMIC FRAGILITY ANALYSIS OF RC FRAME STRUCTURES[J]. Engineering Mechanics, 2012, 29(9): 117-124. DOI: 10.6052/j.issn.1000-4750.2010.12.0944
    [10]ZENG Zhi-he, FAN Jian, YU Qian-qian. PERFORMANCE-BASED PROBABILISTIC SEISMIC DEMAND ANALYSIS OF BRIDGE STRUCTURES[J]. Engineering Mechanics, 2012, 29(3): 156-162.
  • Cited by

    Periodical cited type(23)

    1. 成虎,邱开发,王仁宇,王东升,孙治国. 非均匀锈蚀钢筋屈曲性能研究. 公路交通科技. 2025(02): 146-160 .
    2. 谷敏. 考虑材料性能劣化的桥墩地震易损性分析. 黑龙江交通科技. 2024(06): 129-133 .
    3. 薛庆全. 海湾区在役桥墩CFRP加固后抗震性能数值分析——以琅岐大桥为例. 福建交通科技. 2023(10): 90-94 .
    4. 李贵乾,蔡汶秀,郑罡. 足尺及实桥圆形钢筋混凝土桥墩抗震性能数值模型与验证. 世界桥梁. 2022(02): 90-98 .
    5. 李贵乾,唐光武,郑罡. 钢筋混凝土桥墩拟静力正交试验及数值模拟. 土木与环境工程学报(中英文). 2022(04): 113-123 .
    6. 徐芬,李清朋,宗莉娜,缪云,苑溦. 海洋环境下腐蚀桥墩抗震性能研究. 工程抗震与加固改造. 2022(02): 55-61 .
    7. 刘旭宏,祁皑,罗才松,黄凯. 基于双重壳模型的钢筋黏结滑移有限元模拟. 工程抗震与加固改造. 2022(03): 23-29 .
    8. 梁岩,闫士昌,陆尧,李亮亮. 近海高速铁路桥梁时变地震易损性分析. 防灾减灾工程学报. 2022(06): 1248-1256 .
    9. 江辉,谷琼,黄磊,李辰,孟宪锋,马馨怡. 考虑氯离子侵蚀时变劣化效应的近海斜拉桥地震易损性分析. 东南大学学报(自然科学版). 2021(01): 38-45 .
    10. 马玉宏,邱洁鹏,刘用奇,赵桂峰. 基于高阻尼橡胶支座及墩柱劣化的近海隔震桥梁地震响应分析. 长安大学学报(自然科学版). 2021(02): 23-33 .
    11. 李杉,李旺鹏,唐文水,卢亦焱. 锈蚀钢筋压屈应力-应变本构关系模型研究. 华中科技大学学报(自然科学版). 2021(06): 98-102 .
    12. 刘军. 考虑钢筋与混凝土相对滑移的修正钢筋本构模型. 建筑结构学报. 2021(S1): 448-455 .
    13. 林红威,赵羽习,郭彩霞,胡利,冯鹏. 锈胀开裂钢筋混凝土粘结疲劳性能试验研究. 工程力学. 2020(01): 98-107 . 本站查看
    14. 李磊,王卓涵,张艺欣,郑山锁. 混凝土结构中考虑滑移效应的钢筋本构模型研究. 工程力学. 2020(03): 88-97 . 本站查看
    15. 夏玉超,李振. 考虑动水压力的桥墩钢筋锈蚀抗震性能改进模型研究. 地震工程学报. 2020(05): 1310-1316 .
    16. 李宏男,郑晓伟,李超. 高性能结构抗多次多种灾害全寿命性能分析与设计理论研究进展. 建筑结构学报. 2019(02): 56-69 .
    17. 谢开仲,王红伟,余丹,周剑希. 锈蚀率对钢筋混凝土梁黏结滑移性能影响的试验研究. 混凝土. 2019(02): 17-22 .
    18. 梁岩,任超,牛欢,李杰. 近海环境下耐久性损伤刚构桥墩时变抗震性能分析. 铁道科学与工程学报. 2019(04): 968-975 .
    19. 梁岩,闫佳磊,牛欢,李杰. 考虑主余震作用的近海桥墩时变地震易损性分析. 地震工程学报. 2019(04): 887-894 .
    20. 邢国华,杨成雨,常召群,秦拥军,张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究. 工程力学. 2019(08): 87-95 . 本站查看
    21. 陈梦成,杨超,谢国强,谢力. 氯盐环境下钢筋混凝土梁的黏结试验研究. 铁道学报. 2019(08): 84-93 .
    22. 郑新亮,谢毅,高爽. 腐蚀环境对钢筋混凝土桥墩的抗震性能影响分析. 公路工程. 2019(06): 94-97+146 .
    23. 李宏男,成虎,王东升. 桥梁结构地震易损性研究进展述评. 工程力学. 2018(09): 1-16 . 本站查看

    Other cited types(29)

Catalog

    Article Metrics

    Article views (347) PDF downloads (77) Cited by(52)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return