LI Lei, WANG Zhuo-han, ZHANG Yi-xin, ZHENG Shan-suo. RESEARCH ON THE CONSTITUTIVE MODEL OF STEEL BAR CONSIDERING SLIPPAGE EFFECT IN CONCRETE STRUCTURE[J]. Engineering Mechanics, 2020, 37(3): 88-97. DOI: 10.6052/j.issn.1000-4750.2019.04.0167
Citation: LI Lei, WANG Zhuo-han, ZHANG Yi-xin, ZHENG Shan-suo. RESEARCH ON THE CONSTITUTIVE MODEL OF STEEL BAR CONSIDERING SLIPPAGE EFFECT IN CONCRETE STRUCTURE[J]. Engineering Mechanics, 2020, 37(3): 88-97. DOI: 10.6052/j.issn.1000-4750.2019.04.0167

RESEARCH ON THE CONSTITUTIVE MODEL OF STEEL BAR CONSIDERING SLIPPAGE EFFECT IN CONCRETE STRUCTURE

More Information
  • Received Date: April 09, 2019
  • Revised Date: June 17, 2019
  • To study the rebar slippage effects in reinforced concrete (RC) structures, the steel stress-slip relationship is derived by simplifying the distribution of the bond stress. Based on the existing pull-out test results, the derived steel stress-slip relationship is verified. The model of the plastic hinge length is introduced, and the slippage effects considering steel stress-strain theoretical relationship is established. The influence of the concrete strength, diameter of steel bar, and plastic hinge length on this relationship is analyzed and a simplified constitutive model of steel bar considering slippage effect is proposed. Based on the finite element platform OpenSEES, the fiber beam-column model implemented by the proposed model proved to be accurate and reliable by comparison with the existing experimental results, the fiber model without considering rebar slippage deformation, and the zero-length fiber model. The application scope of the proposed model is further discussed. The results show that the lateral load-displacement response of the RC column can be exactly calculated by the fiber model based on the proposed model; while the column additional lateral displacement caused by rebar slippage deformation can be well predicted.
  • [1]
    Saatcioglu M, Ozcebe G. Response of reinforced concrete columns to simulated seismic loading[J]. ACI Structural Journal, 1989, 86(6):3-12.
    [2]
    Sezen H, Moehle J P. Seismic tests of concrete columns with light transverse reinforcement[J]. ACI Structural Journal, 2006, 103(6):842-849.
    [3]
    Lynn A C, Moehle J P, Mabin S A, et al. Seismic evaluation of existing reinforced concrete building columns[J]. Earthquake Spectra, 1996, 12(4):715-739.
    [4]
    Kawashima K, Watanabe G, Hayakawa R. Seismic performance of RC bridge columns subjected to bilateral excitation[C]//Proceedings of 35th Joint Meeting, Panel on Wind and Seismic Effects, Tsukuba Science City, Japan:Tokyo Institute of Technology, 2003.
    [5]
    Lehman D E, Moehle J P. Seismic performance of well-confined concrete bridge columns:No. PEER-1998/01[R]. Berkeley:University of California-Berkeley, 2000.
    [6]
    Brage F, Gigliotti R, Laterza M. R/C existing structures with smooth reinforcing bars:Experimental behavior of beam-column joints subject to cyclic lateral loads[J].Open Construction and Building Technology Journal, 2009, 3(16):52-67.
    [7]
    吴涛, 魏慧, 刘喜, 等. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2):203-213. Wu Tao, Wei Hui, Liu Xi, et al. Experimental study on axial compression behavior of confined high-strength lightweight aggregate concrete under concentric loading[J]. Engineering Mechanics, 2018, 35(2):203-213. (in Chinese)
    [8]
    梁兴文, 杨鹏辉, 何伟, 等. 钢筋混凝土框架-纤维增强混凝土耗能墙结构抗震性能试验研究[J]. 工程力学, 2018, 35(1):209-218. Liang Xingwen, Yang Penghui, He Wei, et al. Experimental study on aseismic behavior of reinforced concrete frame-energy dissipation walls made with high performance fiber reinforced concrete[J]. Engineering Mechanics, 2018, 35(1):209-218. (in Chinese)
    [9]
    Terzic V, Schoettler M J, Restrepo J I, et al. Concrete column blind prediction contest 2010:Outcomes and observations:No. PEER-2015/01[R]. California:Pacific Earthquake Engineering Research Center, 2015.
    [10]
    Schoettler M J, Restrepo J I, Guerrini G, et al. A full-scale, single-column bridge bent tested by shake-table excitation:No. PEER-2015/02[R]. California:Pacific Earthquake Engineering Research Center, 2015.
    [11]
    Wu Y F, Zhao X M. Unified bond stress-slip model for reinforced concrete[J]. Journal of Structural Engineering, 2013, 139(11):1951-1962.
    [12]
    Tao M X, Nie J G. Fiber beam-column model considering slab spatial composite effect for nonlinear analysis of composite frame systems[J]. Journal of Structural Engineering, 2014, 140(1):04013039.
    [13]
    陶慕轩, 丁然, 潘文豪, 等. 传统纤维模型的一些新发展[J]. 工程力学, 2018, 35(3):1-21. Tao Muxuan, Ding Ran, Pan Wenhao, et al. Some advances in conventional fiber beam-column model[J]. Engineering Mechanics, 2018, 35(3):1-21. (in Chinese)
    [14]
    Tao M X, Nie J G. Element mesh, section discretization and material hysteretic laws for fiber beam-column elements of composite structural members[J]. Materials and Structures, 2015, 48(8):2521-2544.
    [15]
    Monti G, Spacone E. Reinforced concrete fiber beam element with bond-slip[J]. Journal of Structural Engineering, 2000, 126(6):654-661.
    [16]
    Pan W H, Tao M X, Nie J G. Fiber beam-column element model considering reinforcement anchorage slip in the footing[J]. Bulletin of Earthquake Engineering, 2017, 15(3):991-1018.
    [17]
    Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2):133-141.
    [18]
    成虎, 李宏男, 王东升, 等. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J]. 工程力学, 2017, 34(12):48-58. Cheng Hu, Li Hongnan, Wang Dongsheng, et al. Seismic performance analysis of reinforced concrete bridge column considering bond deterioration caused by chloride ion induced corrosion[J]. Engineering Mechanics, 2017, 34(12):48-58. (in Chinese)
    [19]
    朱绩超, 王响, 张勤. 考虑粘结-滑移与剪切作用的钢筋混凝土柱侧向变形分析[J]. 工程力学, 2015, 32(7):128-135. Zhu Jichao, Wang Xiang, Zhang Qin. Lateral deformations analysis of reinforced concrete columns incorporating bond-slip and shear effects[J]. Engineering Mechanics, 2015, 32(7):128-135. (in Chinese)
    [20]
    Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3):280-289.
    [21]
    Shima H, Chou L L, Okamura H. Micro and macro models for bond in reinforced concrete[J]. Journal of the Faculty of Engineering, 1987, 39(2):133-194.
    [22]
    Viwathanatep S, Popov E, Bertero V V. Effects of generalized loadings on bond of reinforcing bars embedded in confined concrete blocks:No. UCB/EERC-79/22[R]. California:Pacific Earthquake Engineering Research Center, 1979.
    [23]
    Mathey R G, Watstein D. Investigation of bond in beam and pull-out specimens with high-yield-strength deformed bars[J]. ACI Journal Proceedings, 1961, 32(9):1071-1090.
    [24]
    Engstrom B, Mangnusson J, Huang Z. Pull-out behavior of ribbed bars in normal and high-strength concrete with various confinements[J]. Special Publication, 1998, 180:215-242.
    [25]
    Ueda T, Lin I, Hawkins N M. Beam bar anchorage in exterior column-beam connections[J]. ACI Journal Proceedings, 1986, 83(3):412-422.
    [26]
    Bae S, Bavrak O. Plastic hinge length of reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3):290-300.
    [27]
    Mckenna F, Fenves G L, Scott M H, et al. Open system for earthquake engineering simulation (OpenSEES)[R]. Berkeley, CA:Pacific Earthquake Engineering Research Center, 2000.
    [28]
    Yassin M H M. Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads[M]. Berkeley:University of California-Berkeley, 1994.
    [29]
    Roy H E H, Sozen M A. Ductility of concrete[J]. Special Publication, 1965, 12:213-235.
    [30]
    Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
    [31]
    过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社, 2013. Guo Zhenhai. Principles of reinforced concrete[M]. Beijing:Tsinghua University Press, 2013. (in Chinese)
  • Related Articles

    [1]QIAN Hui, LI Zong-ao, PEI Jin-zhao, KANG Li-ping. NUMERICAL SIMULATION ON SELF-CENTERING BEAM-COLUMN JOINTS REINFORCED WITH SUPERELASTIC SMA BARS[J]. Engineering Mechanics, 2020, 37(11): 135-145. DOI: 10.6052/j.issn.1000-4750.2019.12.0791
    [2]XIONG Neng, GU Dong-sheng. A CALCULATION MODEL FOR THE SLIP MOMENT-ROTATION OF REINFORCEMENT BOND[J]. Engineering Mechanics, 2019, 36(12): 98-105. DOI: 10.6052/j.issn.1000-4750.2018.12.0696
    [3]LUO Huan, DU Ke, SUN Jing-jiang, DING Bao-rong. HYSTERETIC SHEAR AND ANALYSIS MODELS FOR REINFORCED CONCRETE COUPLING BEAMS WITH SMALL SPAN-TO-DEPTH RATIOS[J]. Engineering Mechanics, 2018, 35(9): 161-169,179. DOI: 10.6052/j.issn.1000-4750.2017.04.0315
    [4]ZHU Shuang, ZHANG Pei-zhou, GU Quan, OU Jin-ping. NUMERICAL ANALYSIS OF BOND-SLIP BEHAVIOR IN RC BEAMS BASED ON OPENSEES[J]. Engineering Mechanics, 2017, 34(增刊): 263-268. DOI: 10.6052/j.issn.1000-4750.2016.04.S052
    [5]WANG Li-sha, CEN Song, XIE Lin-lin, LU Xin-zheng. DEVELOPMENT OF A SHEAR WALL MODEL BASED ON A NEW FLAT SHELL ELEMENT FOR LARGE DEFORMATION SIMULATION AND APPLICATION IN OPENSEES[J]. Engineering Mechanics, 2016, 33(3): 47-54. DOI: 10.6052/j.issn.1000-4750.2015.03.0173
    [6]ZHENG Shan-suo, SHANG Xiao-yu, LI Long, WANG Wei. RESEARCH ON FINE MODELING THEORY AND METHOD IN STEEL REINFORCED CONCRETE STRUCTURES BASED ON BOND-SLIP[J]. Engineering Mechanics, 2014, 31(8): 197-203. DOI: 10.6052/j.issn.1000-4750.2013.05.0504
    [7]XIE Lin-lin, YE Xian-guo, CHONG Xun, JIANG Qing. RESEARCH AND VERIFICATION ON JOINT MODEL OF RC FRAME STRUCTURE IN OPENSEES[J]. Engineering Mechanics, 2014, 31(3): 116-121. DOI: 10.6052/j.issn.1000-4750.2012.04.0262
    [8]XIE Lin-lin, HUANG Yu-li, LU Xin-zheng, LIN Kai-qi, YE Lie-ping. ELASTO-PLASTIC ANALYSIS FOR SUPER TALL RC FRAME-CORE TUBE STRUCTURES BASED ON OPENSEES[J]. Engineering Mechanics, 2014, 31(1): 64-71. DOI: 10.6052/j.issn.1000-4750.2013.07.0591
    [9]XU Guo-shan, HAO Wei, CHEN Yong-sheng, WU Bin, OU Jin-ping. EXPERIMENTAL VALIDATION ON HYBRID TESTING SYSTEM BASED ON OPENFRESCO-LABVIEW-DSPACE[J]. Engineering Mechanics, 2013, 30(3): 417-423. DOI: 10.6052/j.issn.1000-4750.2011.10.0658
    [10]BAI Jiu-lin, OU Jin-ping. OPTIMIZATION OF FAILURE MODES FOR REINFORCED CONCRETE BUILDINGS BASED ON IDA METHOD[J]. Engineering Mechanics, 2011, 28(增刊Ⅱ): 198-203.
  • Cited by

    Periodical cited type(6)

    1. 孙靖越,胡帅军,张俊淋,邓伟彤,王亚楠. 现浇混凝土空心楼盖竖向受力特征与参数分析. 西安工业大学学报. 2024(05): 549-555 .
    2. 张永强,夏修身,马健行,黎大玮,罗辉,陈琦璠. 钢筋混凝土墩柱弯剪数值模型对比研究. 建筑科学与工程学报. 2024(06): 70-78 .
    3. 邓明科,范洪侃,马福栋,刘俊超,张伟. 高延性混凝土与带肋钢筋黏结性能试验研究. 工程力学. 2023(03): 78-87 . 本站查看
    4. 王勇,王功臣,王本淼,钟波,部翼翔,任兆卿. 火灾后混凝土连续板剩余承载力试验研究及理论分析. 工程力学. 2022(02): 96-109 . 本站查看
    5. 程卫红,肖从真,田春雨,陆宜倩. 梁柱部分无粘结螺杆连接装配式节点的受力机理分析研究. 工程抗震与加固改造. 2022(02): 1-10 .
    6. 余亚斌,印宝权. 装配式预应力梁高效生产施工技术探讨. 新型工业化. 2022(10): 143-148 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (500) PDF downloads (175) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return