DENG Ming-ke, FAN Hong-kan, MA Fu-dong, LIU Jun-chao, ZHANG Wei. EXPERIMENTAL STUDY ON BOND BEHAVIOR BETWEEN HIGH DUCTILE CONCRETE AND RIBBED STEEL BAR[J]. Engineering Mechanics, 2023, 40(3): 78-87. DOI: 10.6052/j.issn.1000-4750.2021.08.0672
Citation: DENG Ming-ke, FAN Hong-kan, MA Fu-dong, LIU Jun-chao, ZHANG Wei. EXPERIMENTAL STUDY ON BOND BEHAVIOR BETWEEN HIGH DUCTILE CONCRETE AND RIBBED STEEL BAR[J]. Engineering Mechanics, 2023, 40(3): 78-87. DOI: 10.6052/j.issn.1000-4750.2021.08.0672

EXPERIMENTAL STUDY ON BOND BEHAVIOR BETWEEN HIGH DUCTILE CONCRETE AND RIBBED STEEL BAR

More Information
  • Received Date: August 27, 2021
  • Revised Date: November 13, 2021
  • Accepted Date: November 17, 2021
  • Available Online: November 17, 2021
  • In order to study the bond performance between high ductility concrete (HDC) and ribbed bars, 20 groups of specimens were designed and manufactured. Through the center pull-out test, the failure mode and bond-slip failure mechanism of specimens under monotonic and repeated loads were studied, and the effects of compressive strength, of fiber content, of fiber types and of protective layer thickness of HDC on the bond performance between ribbed steel bars and HDC were analyzed. The experimental results show that: under monotonic and repeated loads, brittle splitting failure occurs in ordinary concrete specimens, and splitting and pulling-out failure occurs in HDC specimens. The test results also show that the bond strength between ribbed steel bars and HDC increases with the increase of HDC compressive strength. When the compressive strength of HDC is the same, the increase of fiber content can improve the bonding performance between ribbed steel bars and HDC. Compared with PP fiber, PE fiber and PVA fiber with the same volume content can effectively limit the development of radial cracks in concrete and improve the bond strength between ribbed steel bars and HDC. According to the failure mode and bond strength, the critical relative protective layer thickness is 2.0. Under monotonic and repeated loads, the bond strength ratio of specimens is dominated by fiber types and relative protective layer thickness, while the residual bond strength ratio is dominated by compressive strength and fiber content. According to the test results, the bond strength calculation formula and bond-slip constitutive model between ribbed bars and HDC are established.
  • [1]
    邓明科, 常云涛, 梁兴文, 等. 高延性水泥基复合材料抗压强度尺寸效应的正交试验研究[J]. 工业建筑, 2013, 43(7): 80 − 85.

    DENG Mingke, CHANG Yuntao, LIANG Xingwen, et al. Orthogonal test research on compressive strength size effect of engineered cementitious composites [J]. Industrial Construction, 2013, 43(7): 80 − 85. (in Chinese)
    [2]
    邓明科, 孙宏哲, 梁兴文, 等. 延性纤维混凝土抗弯性能的试验研究[J]. 工业建筑, 2014, 44(5): 85 − 90.

    DENG Mingke, SUN Hongzhe, LIANG Xingwen, et al. Experimental study of flexural behavior of ductile fiber reinforced concrete [J]. Industrial Construction, 2014, 44(5): 85 − 90. (in Chinese)
    [3]
    邓明科, 刘海勃, 秦萌, 等. 高延性纤维混凝土抗压韧性试验研究[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(5): 660 − 665.

    DENG Mingke, LIU Haibo, QIN Meng, et al. Experimental research on compressive toughness of the high ductile fiber reinforced concrete [J]. Xi'an University of Architecture & Technology (Natural Science Edition), 2015, 47(5): 660 − 665. (in Chinese)
    [4]
    李艳, 梁兴文, 邓明科. 高性能PVA纤维增强水泥基复合材料常规三轴受压本构模型[J]. 工程力学, 2012, 29(1): 106 − 113.

    LI Yan, LIANG Xingwen, DENG Mingke. A constitutive model for high performance PVA fiber reinforced cement composites under conventional triaxial compression [J]. Engineering Mechanics, 2012, 29(1): 106 − 113. (in Chinese)
    [5]
    DENG M K, PAN J J, LIANG X W. Uniaxial compressive test of high ductile fiber-reinforced concrete and damage constitutive model [J]. Advance in Civil Engineering, 2018, 2018(PT.1): 1 − 12.
    [6]
    邓明科, 马福栋, 叶旺, 等. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68 − 78. doi: 10.6052/j.issn.1000-4750.2018.05.0263

    DENG Mingke, MA Fudong, YE Wang, et al. Experimental study on seismic behavior of prefabricated frame beam-column joints with high ductility concrete [J]. Engineering Mechanics, 2019, 36(9): 68 − 78. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0263
    [7]
    邓明科, 代龙, 何斌斌, 等. 塑性铰区采用高延性混凝土梁变形性能研究[J]. 工程力学, 2021, 38(1): 52 − 63, 99. doi: 10.6052/j.issn.1000-4750.2019.07.0350

    DENG Mingke, DAI Long, HE Binbin, et al. Study on deformation behavior of beams with high ductility concrete in plastic hinge area [J]. Engineering Mechanics, 2021, 38(1): 52 − 63, 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0350
    [8]
    邓明科, 代洁, 梁兴文, 等. 高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2016, 33(10): 208 − 217. doi: 10.6052/j.issn.1000-4750.2015.03.0209

    DENG Mingke, DAI Jie, LIANG Xingwen, et al. Experimental study on shear behavior of high ductility concrete beams without web reinforcement [J]. Engineering Mechanics, 2016, 33(10): 208 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0209
    [9]
    邓明科, 李琦琦, 刘海勃, 等. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算[J]. 工程力学, 2020, 37(1): 63 − 72. doi: 10.6052/j.issn.1000-4750.2018.05.0290

    DENG Mingke, LI Qiqi, LIU Haibo, et al. Experimental study on seismic performance and calculation of shear capacity of low-rise concrete shear walls [J]. Engineering Mechanics, 2020, 37(1): 63 − 72. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0290
    [10]
    邓明科, 寇佳亮, 梁兴文, 等. 延性纤维混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(7): 170 − 177. doi: 10.6052/j.issn.1000-4750.2013.01.0099

    DENG Mingke, KOU Jialiang, LIANG Xingwen, et al. Experimental study on seismic behavior of ductile fiber reinforced concrete shear walls [J]. Engineering Mechanics, 2014, 31(7): 170 − 177. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.01.0099
    [11]
    王洪昌. 超高韧性水泥基复合材料与钢筋粘结性能的试验研究 [D]. 大连: 大连理工大学, 2008.

    WANG Hongchang, experimental study on bond performance between ultra-high toughness cement-based composites and steel bars [D]. Dalian: Dalian university of technology, 2008. (in Chinese)
    [12]
    TOSHIYUKI K, HIROSHI H. Bond-splitting strength of reinforced strain-hardening cement composite elements with small bar spacing [J]. ACI Structure Journal, 2015, 112(2): 189 − 198.
    [13]
    CAMPIONE G, CUCCHIARA C, MENDOLA L L. Steel-concrete bond in lightweight fiber reinforced concrete under monotonic and cyclic actions [J]. Engineering Structures, 2005, 27(6): 881 − 890. doi: 10.1016/j.engstruct.2005.01.010
    [14]
    高向玲, 李杰. 反复荷载作用下钢筋和纤维混凝土黏结性能试验研究[J]. 建筑结构学报, 2012, 33(10): 121 − 129.

    GAO Xiangling, LI Jie. Experimental study on bond behavior of reinforced concrete and fiber reinforced concrete under repeated loads [J]. Journal of Building Structures, 2012, 33(10): 121 − 129. (in Chinese)
    [15]
    LI J, GAO X L, ZHANG P. Experimental investigation on the bond of reinforcing bars in high performance concrete under cyclic loading [J]. Materials and Structures, 2007, 40(10): 1027 − 1044. doi: 10.1617/s11527-006-9201-1
    [16]
    HARAJLI M H. Effect of confinement using steel, FRC, or FRP on the bond stress-slip response of steel bars under cyclic loading [J]. Materials and Structures, 2006, 39(6): 621 − 643.
    [17]
    HARAJLI M H. Bond stress-slip model for steel bars in unconfined or steel, FRC, or FRP confined concrete under cyclic loading [J]. Journal of Structural Engineering, ASCE, 2009, 135(5): 509 − 518.
    [18]
    邓明科, 潘姣姣, 梁兴文. 高延性混凝土与钢筋黏结性能的试验研究[J]. 土木工程学报, 2018, 51(3): 19 − 35.

    DENG Mingke, PAN Jiaojiao, LIANG Xingwen. Experimental study on bond behavior between high ductility concrete and steel bars [J]. Journal of Civil Engineering, 2018, 51(3): 19 − 35. (in Chinese)
    [19]
    潘姣姣. 钢筋与高延性混凝土黏结机理及基于黏结机理的梁裂缝宽度计算模型 [D]. 西安: 西安建筑科技大学, 2019.

    PAN Jiaojiao. Bond mechanism between steel bar and high ductility concrete and calculation model of beam crack width based on bond mechanism [D]. Xi’an: Xi’an University of Architecture and Technology, 2019. (in Chinese)
    [20]
    李磊, 王卓涵, 张艺欣, 等. 混凝土结构中考虑滑移效应的钢筋本构模型研究[J]. 工程力学, 2020, 37(3): 88 − 97. doi: 10.6052/j.issn.1000-4750.2019.04.0167

    LI Lei, WANG Zhuohan, ZHANG Yixin, et al. Study on the constitutive model of reinforcement considering slip effect in concrete structures [J]. Engineering Mechanics, 2020, 37(3): 88 − 97. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0167
    [21]
    LOSBERG A, OLSSON P. Bond failure of deformed reinforcing bars based on the longitudinal splitting effect of the bars [J]. Journal Proceedings, 1979, 76(1): 5 − 18.
    [22]
    GB/T 1499.2−2018. 钢筋混凝土用钢第2部分: 热轧带肋钢筋 [S]. 北京: 中国标准出版社, 2018.

    GB/T1499.2−2018. Steel for reinforced concrete part 2: hot rolled ribbed steel bars [S]. Beijing: China Standards Press, 2018. (in Chinese)
    [23]
    李杰, 高向玲, 艾晓秋. 纤维增韧混凝土与钢筋的黏结性能研究[J]. 建筑结构学报, 2004, 25(2): 99 − 103. doi: 10.3321/j.issn:1000-6869.2004.02.016

    LI Jie, GAO Xiangling, AI Xiaoqiu. Study on bond performance between fiber reinforced concrete and steel bars [J]. Journal of Building Structure, 2004, 25(2): 99 − 103. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.02.016
  • Cited by

    Periodical cited type(4)

    1. 武芳文,吴健辉,卞正容,马亚腾,李滋润,雷海鹏. ECC-NC复合梁抗弯性能试验. 中国公路学报. 2025(01): 158-172 .
    2. 郭保瑞. 地铁施工中钢筋与复合混凝土结构的粘结性能研究. 粘接. 2025(03): 39-42 .
    3. 寇国辉,闫晓燕,谢宏飞,张晓明,储成群,耿精. 韧性治理融入实验室安全管理:构建实验室生态安全共同体. 实验技术与管理. 2025(03): 212-218 .
    4. 杨犇,章子华,周春恒,王轩,张振文. 基于三维扫描的带肋钢筋-混凝土界面黏结失效精细有限元分析. 工程力学. 2024(S1): 215-221 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (470) PDF downloads (114) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return