LU Yan, XU Yu-hao, HAN Qing-hua, WANG Shu-yu. SEISMIC FRAGILITY ANALYSIS AND RESILIENCE EVALUATION OF GYMNASIUM[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0723
Citation: LU Yan, XU Yu-hao, HAN Qing-hua, WANG Shu-yu. SEISMIC FRAGILITY ANALYSIS AND RESILIENCE EVALUATION OF GYMNASIUM[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0723

SEISMIC FRAGILITY ANALYSIS AND RESILIENCE EVALUATION OF GYMNASIUM

More Information
  • Received Date: September 28, 2023
  • Revised Date: January 15, 2024
  • Available Online: February 18, 2024
  • China is one of the most earthquake-damaged countries in the world. As gymnasiums are often used as emergency shelters after earthquakes, evaluating their seismic resilience is significant. In this study, the analysis model of a gymnasium is established by SAP2000. The incremental dynamic analysis method is applied to analyze the fragility of reinforced concrete frames and spatial steel truss structures. According to the reliability theory of the series system, the failure probability of the gymnasium after different earthquake intensities is acquired. Proposed are the calculation method of repair cost and time based on expected value and standard deviation and, one building post-earthquake recovery model. Then the seismic resilience curves of gymnasium under various repair paths are established. The analysis results show that the main frame and the bearing connecting main frame and space truss are destroyed first, when the seismic intensity increases gradually. The repair time of structural members and stairs in each floor is longer. Except for the non-structural members connected to the roof, and the repair time of each floor increases with the increase of the height of the floor. When the seismic intensity increases, the function improvement and repair time of each floor in the building resilience curve do not change in the same proportion. Under the resource constraints, the building function improves the fastest when it is repaired as the repair efficiency is from high to low.w.

  • [1]
    陈明利, 陈川南. 体育馆作为应急避难场所的发展及功能研究[J]. 武汉理工大学学报(信息与管理工程版), 2021, 43(1): 9 − 14.

    CHEN Mingli, CHEN Chuannan. Research on development and function of gymnasium as emergency refuge site [J]. Journal of WUT (Information & Management Engineering), 2021, 43(1): 9 − 14. (in Chinese)
    [2]
    武陈. 体育场馆作为救灾的避难场所的功能和作用研究[J]. 灾害学, 2018, 33(4): 175 − 179. doi: 10.3969/j.issn.1000-811X.2018.04.030

    WU Chen. Research on the function and function of gymnasium as a refuge for disaster relief [J]. Journal of Catastrophology, 2018, 33(4): 175 − 179. (in Chinese) doi: 10.3969/j.issn.1000-811X.2018.04.030
    [3]
    景铭, 韩庆华, 芦燕, 等. 长周期地震动下大跨空间结构空气弹簧-摩擦摆三维隔震体系振动控制分析[J]. 工程力学, 2023, 40(11): 31 − 45. doi: 10.6052/j.issn.1000-4750.2022.01.0101

    JING Ming, HAN Qinghua, LU Yan, et al. Vibration control analysis of the air spring-FPS three-dimensional isolated structure of large-span spatial structure subjected to long-period ground motions [J]. Engineering Mechanics, 2023, 40(11): 31 − 45. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.01.0101
    [4]
    FEMA P-58, Seismic performance assessment of buildings [S]. Washington: FEMA, 2012.

    FEMA P-58, Seismic performance assessment of buildings [S]. Washington: FEMA, 2012.
    [5]
    GB/T 38591−2020, 建筑抗震韧性评价标准[S]. 北京: 中国标准出版社, 2020.

    GB/T 38591−2020, Standard for seismic resilience assessment of buildings [S]. Beijing: Standards Press of China, 2020. (in Chinese)
    [6]
    YANG T Y, MOEHLE J, STOJADINOVIC B, et al. Seismic performance evaluation of facilities: Methodology and implementation [J]. Journal of Structural Engineering, 2009, 135(10): 1146 − 1154. doi: 10.1061/(ASCE)0733-9445(2009)135:10(1146)
    [7]
    从阳, 余丁浩, 李钢, 等. 城市综合体多层级功能损失及抗震韧性评估方法[J]. 建筑结构学报, 2023, 44(7): 1 − 14.

    CONG Yang, YU Dinghao, LI Gang, et al. Multi-level function loss and seismic resilience assessment method of urban complex [J]. Journal of Building Structures, 2023, 44(7): 1 − 14. (in Chinese)
    [8]
    JACQUES C C, MCINTOSH J, GIOVINAZZI S, et al. Resilience of the Canterbury hospital system to the 2011 Christchurch earthquake [J]. Earthquake Spectra, 2014, 30(1): 533 − 554. doi: 10.1193/032013EQS074M
    [9]
    尚庆学, 李吉超, 王涛. 医疗系统抗震韧性评估指标体系[J]. 工程力学, 2019, 36(增刊1): 106 − 110. doi: 10.6052/j.issn.1000-4750.2018.06.S019

    SHANG Qingxue, LI Jichao, WANG Tao. Indicators system used in seismic resilience assessment of hospital system [J]. Engineering Mechanics, 2019, 36(Suppl 1): 106 − 110. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.S019
    [10]
    康现栋, 付皓然, 赵光, 等. 单体建筑抗震韧性评估方法研究与应用[J]. 土木工程学报, 2021, 54(8): 37 − 42.

    KANG Xiandong, FU Haoran, ZHAO Guang, et al. Research and application of evaluation methods for earthquake resilience of individual building structure [J]. China Civil Engineering Journal, 2021, 54(8): 37 − 42. (in Chinese)
    [11]
    北京金土木软件技术有限公司, 中国建筑标准设计研究院. SAP2000中文版使用指南[M]. 北京: 人民交通出版社, 2006.

    Beijing Civil King Software Technology Co. , Ltd, China Institute of Building Standard Design. SAP2000 Chinese version use guide [M]. Beijing: China Communication Press, 2006. (in Chinese)
    [12]
    GB/T 18208.2−2001, 地震现场工作 第二部分: 建筑物安全鉴定[S]. 北京: 中国标准出版社, 2004.

    GB/T 18208.2−2001, Post-earthquake field works--part 2: Safety assessment of buildings [S]. Beijing: Standards Press of China, 2004. (in Chinese)
    [13]
    FEMA P-695, Quantification of building seismic performance factors [S]. Washington: FEMA, 2009.
    [14]
    BAKER J W. Efficient analytical fragility function fitting using dynamic structural analysis [J]. Earthquake Spectra, 2015, 31(1): 579 − 599. doi: 10.1193/021113EQS025M
    [15]
    吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 − 11, 24. doi: 10.6052/j.issn.1000-4750.2018.07.ST08

    LÜ Dagang, LIU Yang, YU Xiaohui. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation performance-based earthquake engineering [J]. Engineering Mechanics, 2019, 36(9): 1 − 11, 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST08
    [16]
    GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [17]
    ZHANG J, HUO Y L. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method [J]. Engineering Structures, 2009, 31(8): 1648 − 1660. doi: 10.1016/j.engstruct.2009.02.017
    [18]
    刘大海, 杨翠如, 钟锡根. 高层建筑抗震设计[M]. 北京: 中国建筑工业出版社, 1993.

    LIU Dahai, YANG Cuiru, ZHONG Xigen. Seismic design of high-rise building [M]. Beijing: China Architecture & Building Press, 1993. (in Chinese)
    [19]
    舒兴平, 曹福亮, 卢倍嵘, 等. 基于增量动力分析法的大跨度空间管桁架结构地震易损性分析[J]. 工业建筑, 2016, 46(3): 108 − 112.

    SHU Xingping, CAO Fuliang, LU Beirong, et al. Seismic fragility analysis of large-span spatial pipe-truss based on IDA method [J]. Industrial Construction, 2016, 46(3): 108 − 112. (in Chinese)
    [20]
    潘毅, 包韵雷, 刘永鑫, 等. 基础隔震大跨异形钢连廊连体结构地震易损性分析[J]. 土木工程学报, 2021, 54(2): 20 − 29.

    PAN Yi, BAO Yunlei, LIU Yongxin, et al. Seismic fragility analysis of base-isolation structure connected with large span special-shaped steel corridor [J]. China Civil Engineering Journal, 2021, 54(2): 20 − 29. (in Chinese)
    [21]
    乔保娟, 肖从真, 杨志勇. 基于构件损伤状态的复杂建筑抗震韧性评价方法研究[J]. 工程力学, 2023, 40(11): 21 − 30. doi: 10.6052/j.issn.1000-4750.2022.01.0100

    QIAO Baojuan, XIAO Congzhen, YANG Zhiyong. Research on seismic resilience assessment method of complex buildings based on component damage states [J]. Engineering Mechanics, 2023, 40(11): 21 − 30. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.01.0100
    [22]
    HAN Q H, ZHAO Y F, LU Y, et al. Substructure hybrid test examining the seismic response of point-supported glass façades attached to large-span spatial steel structures [J]. Engineering Structures, 2022, 266: 114545. doi: 10.1016/j.engstruct.2022.114545
    [23]
    LU Y, MOSQUEDA G, HAN Q H, et al. Shaking table tests examining seismic response of suspended ceilings attached to large-span spatial structures [J]. Journal of Structural Engineering, 2018, 144(9): 04018152. doi: 10.1061/(ASCE)ST.1943-541X.0002140
    [24]
    芦燕, 张一鸣, 张晓龙. 单层网壳吊顶系统抗震韧性研究[J]. 地震工程与工程振动, 2021, 41(6): 105 − 113.

    LU Yan, ZHANG Yiming, ZHANG Xiaolong. An investigation on seismic resilience of ceiling system attached to single-layer reticulated dome [J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(6): 105 − 113. (in Chinese)
    [25]
    韩庆华, 赵一峰, 芦燕. 大型公共建筑非结构构件抗震性能及韧性提升研究综述[J]. 土木工程学报, 2020, 53(12): 1 − 10.

    HAN Qinghua, ZHAO Yifeng, LU Yan. Seismic behavior and resilience improvements of nonstructural components in the large public buildings-a review [J]. China Civil Engineering Journal, 2020, 53(12): 1 − 10. (in Chinese)
    [26]
    CIMELLARO G P, REINHORN A M, BRUNEAU M. Framework for analytical quantification of disaster resilience [J]. Engineering Structures, 2010, 32(11): 3639 − 3649. doi: 10.1016/j.engstruct.2010.08.008
    [27]
    温傲寒. 考虑不同修复路径的RC框架结构工程韧性评估[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WEN Aohan. Structural resilience evaluation of reinforced concrete frame structures considering different repairing path [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
  • Related Articles

    [1]MEN Jin-jie, LI Tong, ZHANG Hui-huang, LI Jia-fu, ZHANG Qian. STUDY ON SEISMIC BEHAVIOR AND ON EARTHQUAKE-RESILIENT PERFORMANCE OF BEAM-COLUMN JOINT WITH REPLACEABLE T-STUBS[J]. Engineering Mechanics, 2025, 42(2): 229-244. DOI: 10.6052/j.issn.1000-4750.2022.11.0996
    [2]LIANG Huang-bin, XIE Qiang. POST-EARTHQUAKE RECOVERY SIMULATION AND SEISMIC RESILIENCE RISK ASSESSMENT METHOD FOR ENGINEERING SYSTEMS—TAKING ONE SUBSTATION SYSTEM AS AN EXAMPLE[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.11.0818
    [3]HOU Ben-wei, YUAN Ming-hao, WU Shan, MIAO Hui-quan, XU Cheng-shun. POST-EARTHQUAKE FUNCTIONALITY ASSESSMENT OF WATER TREATMENT PLANT SYSTEM BASED ON STATE TREE MODEL[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.10.0813
    [4]WEI Jian-peng, TIAN Li-min. STUDY ON SEISMIC PERFORMANCE OF AN EARTHQUAKE-RESILIENT COLUMN BASE WITH MULTISTAGE RESISTANCE[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.05.0364
    [5]QIAO Bao-juan, XIAO Cong-zhen, YANG Zhi-yong. RESEARCH ON SEISMIC RESILIENCE ASSESSMENT METHOD OF COMPLEX BUILDINGS BASED ON COMPONENT DAMAGE STATES[J]. Engineering Mechanics, 2023, 40(11): 21-30. DOI: 10.6052/j.issn.1000-4750.2022.01.0100
    [6]CHEN Yin-zhen, JIA Ming-ming, LYU Da-gang. EARTHQUAKE RESILIENCE EVALUATION OF HIGH-RISE STEEL FRAME STRUCTURES BASED ON THE STIFFNESS-FLEXIBILITY INDICATOR[J]. Engineering Mechanics, 2023, 40(S): 92-97, 119. DOI: 10.6052/j.issn.1000-4750.2022.06.S043
    [7]ZHOU Zhou, HAN Miao, LYU Da-gang, ZENG Li-jing, YU Xiao-hui. A FRAGILITY ANALYSIS FRAMEWORK FOR RC FRAME BUILDINGS SUBJECTED TO MAINSHOCK-AFTERSHOCK SEQUENCES CONSIDERING MULTIPLE DAMAGE INDICATORS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.03.0202
    [8]HUANG Wei, HU Gao-xing. SEISMIC PERFORMANCE OF EARTHQUAKE-RESILIENT PRECAST RC BEAM-COLUMN JOINTS[J]. Engineering Mechanics, 2022, 39(12): 165-176, 189. DOI: 10.6052/j.issn.1000-4750.2021.07.0554
    [9]KOU Zheng, LI Ning. STUDY ON EARTHQUAKE RESILIENCE ANALYSIS AND OPTIMIZATION FOR URBAN BRIDGE NETWORK SYSTEM BASED ON NSGA-II ALGORITHM[J]. Engineering Mechanics, 2021, 38(3): 148-158, 180. DOI: 10.6052/j.issn.1000-4750.2020.05.0290
    [10]JI Xiao-dong, QIAN Jia-ru. STUDY OF EARTHQUAKE-RESILIENT COUPLED SHEAR WALLS[J]. Engineering Mechanics, 2015, 32(10): 1-8. DOI: 10.6052/j.issn.1000-4750.2014.07.ST07

Catalog

    Article Metrics

    Article views (116) PDF downloads (30) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return