JIA Chao-jun, WANG Huan-ling, XU Wei-ya, ZUO Jing. STUDY ON GAS PERMEATION AND SLIPPAGE EFFECTS IN ROCK MASS OF UNDERGROUND WATER-SEALED CAVE[J]. Engineering Mechanics, 2015, 32(8): 50-57. DOI: 10.6052/j.issn.1000-4750.2014.01.0006
Citation: JIA Chao-jun, WANG Huan-ling, XU Wei-ya, ZUO Jing. STUDY ON GAS PERMEATION AND SLIPPAGE EFFECTS IN ROCK MASS OF UNDERGROUND WATER-SEALED CAVE[J]. Engineering Mechanics, 2015, 32(8): 50-57. DOI: 10.6052/j.issn.1000-4750.2014.01.0006

STUDY ON GAS PERMEATION AND SLIPPAGE EFFECTS IN ROCK MASS OF UNDERGROUND WATER-SEALED CAVE

More Information
  • Received Date: January 02, 2014
  • The rock surrounding an underground water-sealed cave is a kind of low permeability medium. Its gas permeability property and the change in gas permeability when subjected to different confining pressures draw considerable attention in the construction of underground water-sealed caves. This paper conducts experiments on gas permeability and gas slippage effects, and uses a scanning electron microscope (SEM) to study the weathered granitic gneiss of an underground water-sealed cave in China. The results show that the laws governing the change in gas permeability and rock porosity vary at different stages of confining pressure. It is found that there is a threshold point for confining pressure. The relationship between gas permeability and confining pressure is exponential when the pressure is larger than the value, otherwise, it is a quadratic function relationship. The SEM tests indicate that the different behaviors of gas permeability and porosity are caused by the micro-fissures and micro-void generated by unconformable contact when pressure is applied. Additionally, the measured values of gas permeability need to be modified due to the existence of gas slippage effects, and these must be taken into account when designing and running underground water-sealed caves. Gas slippage is closely related to confining pressure and its maximum impact occurs at a confining pressure of 8 MPa~9 MPa for this weathered granitic gneiss.
  • [1]
    Davy C A, Skoczylas F, Barnichon J D, et al. Permeability of macro-cracked argillite under confinement: Gas and water testing [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8): 667―680.
    [2]
    Bourbie T, Walls J. Pulse decay permeability: Analytical solution and experimental test [J]. Society of Petroleum Engineers Journal, 1982, 22(5): 719―721.
    [3]
    Chung I M, Cho W, Heo J H. Stochastic hydraulic safety factor for gas containment in underground storage caverns [J]. Journal of Hydrology, 2003, 284(1): 77―91.
    [4]
    Mengshu W, Huijun Y. Basic principles for design and construction of underground water-sealed hydrocarbon- storage rock caverns [J]. Engineering Sciences, 2008, 10(4): 11―16.
    [5]
    Wang H L, Xu W Y, Shao J F. Experimental researches on hydro-mechanical properties of altered rock under confining pressures [J]. Rock Mechanics and Rock Engineering, 2013, 47(2): 1―9.
    [6]
    Wang H, Xu W, Shao J, et al. The gas permeability properties of low-permeability rock in the process of triaxial compression test [J]. Materials Letters, 2014, 116(1): 386―388.
    [7]
    黄远智, 王恩志. 低渗透岩石渗透率与有效围压关系的实验研究[J]. 清华大学学报(自然科学版), 2007, 47(3): 38―41. Huang Yuanzhi, Wang Enzhi. Experimental study of the laws between the effective confirming pressure and rock permeability [J]. Journal of Tsinghua University (Science and Technology), 2007, 47(3): 38―41. (in Chinese)
    [8]
    刘建军, 刘先贵, 胡雅衽. 低渗透岩石非线性渗流规律研究[J]. 岩石力学与工程学报, 2003, 22(4): 556―561. Liu Jianjun, Liu Xian’gui, Hu Yaren. Study on nonlinear seepage of rock of low permeability [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 556―561. (in Chinese)
    [9]
    Li J, Liu D, Yao Y, et al. Evaluation and modeling of gas permeability changes in anthracite coals [J]. Fuel, 2013, 111(1): 606―612.
    [10]
    Mohanty S, Vandergrift T. Long term stability evaluation of an old underground gas storage cavern using unique numerical methods [J]. Tunnelling and Underground Space Technology, 2012, 30(15): 145―154.
    [11]
    David C, Menendez B, Zhu W, et al. Mechanical compaction, microstructures and permeability evolution in sandstones [J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(1): 45―51.
    [12]
    Lion M, Skoczylas F, Ledésert B. Determination of the main hydraulic and poro-elastic properties of a limestone from Bourgogne, France [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(6): 915―925.
    [13]
    Morrow C A, Lockner D A. Permeability and porosity of the Illinois UPH 3 drillhole granite and a comparison with other deep drillhole rocks [J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1997, 102(B2): 3067―3075.
    [14]
    Xu P, Yu B. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry [J]. Advances in Water Resources, 2008, 31(1): 74―81.
    [15]
    Civan F. Scale effect on porosity and permeability: Kinetics, model, and correlation [J]. AIChE Journal, 2001, 47(2): 271―287.
    [16]
    Pape H, Clauser C, Iffland J. Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model [M]// Fractals and Dynamic Systems in Geoscience. Germany: Birkhäuser Basel, 2000: 603―619.
  • Related Articles

    [1]LIANG Jing-yu, LU De-chun, SHEN Wan-tao, QI Ji-lin. THREE-STAGE STRENGTH CRITERION FOR FROZEN SOIL INCORPORATING THE CONFINING PRESSURE EFFECT[J]. Engineering Mechanics, 2023, 40(10): 169-178. DOI: 10.6052/j.issn.1000-4750.2022.01.0096
    [2]TANG Qiong, LI Yi, LU Xin-zheng, YAN Wei-ming. Study on axial compression capacity of multi-spiral hoops confined concrete columns[J]. Engineering Mechanics, 2018, 35(S1): 166-171. DOI: 10.6052/j.issn.1000-4750.2017.06.S033
    [3]CHENG Song-song, CHEN Wan-xiang, GUO Zhi-kun, ZHANG Yan-yan. CARRYING-CAPACITIES OF RC SLABS WITH FULLY-FIXED SUPPORTS BASED ON THE COMPRESSIVE-TENSILE MEMBRANE EFFECT[J]. Engineering Mechanics, 2018, 35(12): 81-88. DOI: 10.6052/j.issn.1000-4750.2017.09.0673
    [4]JIN De-hai, XU Ming. PARAMETER CORRECTION METHOD OF BURGERS MODEL FOR COARSE-GRAINED SOIL CONSIDERING CONFINING PRESSURE[J]. Engineering Mechanics, 2016, 33(12): 135-142. DOI: 10.6052/j.issn.1000-4750.2015.04.0360
    [5]JING Guo-qing, WANG Zi-jie, SHI Xiao-yi. BALLAST TRIAXIAL TESTS AND NON-BREAKABLE PARTICLE DISCRETE ELEMENT METHOD ANALYSIS UNDER DIFFERENT CONFINING PRESSURES[J]. Engineering Mechanics, 2015, 32(10): 82-88. DOI: 10.6052/j.issn.1000-4750.2014.03.0205
    [6]ZHOU Chun-sheng. NUMERICAL ANALYSIS OF GAS PERMEABILITY OF CONCRETE INCORPORATING RECYCLED AGGREGATE[J]. Engineering Mechanics, 2012, 29(12): 204-210. DOI: 10.6052/j.issn.1000-4750.2011.05.0270
    [7]LIU Jun-zhong, XU Jin-yu, Lü Xiao-cong, WANG Ze-dong, ZHANG Lei. STUDY ON DYNAMIC BEHAVIOR AND DAMAGE CONSTITUTIVE MODEL OF ROCK UNDER IMPACT LOADING WITH CONFINING PRESSURE[J]. Engineering Mechanics, 2012, 29(1): 55-63.
    [8]LU Xiao-cong, XU Jin-yu, ZHAO De-hui, GE Hong-hai. RESEARCH ON CONFINING PRESSURE EFFECT OF SANDSTONE DYNAMIC MECHANICAL PERFORMANCE UNDER THE CYCLICAL IMPACT LOADINGS[J]. Engineering Mechanics, 2011, 28(1): 138-144.
    [9]XUE Zhi-gang, HU Shi-sheng. DYNAMIC BEHAVIOR OF CEMENT MORTAR UNDER CONFINEMENT[J]. Engineering Mechanics, 2008, 25(12): 184-188,.
    [10]LI Shun-cai, MIAO Xie-xing, CHEN Zhan-qing, MAO Xian-biao. EXPERIMENTAL STUDY ON SEEPAGE PROPERTIES OF NON-DARCY FLOW IN CONFINED BROKEN ROCKS[J]. Engineering Mechanics, 2008, 25(4): 85-092.
  • Cited by

    Periodical cited type(8)

    1. 王颂,张路青,周剑,李晓,潘哲君,杨多兴,李国梁. 致密储层岩石超低渗测试系统研发与应用进展. 工程地质学报. 2024(04): 1186-1198 .
    2. 卜宜顺,杨圣奇,黄彦华. 温度和损伤程度对砂岩渗透特性影响的试验研究. 工程力学. 2021(05): 122-130 . 本站查看
    3. 刘健,陈亮,王春萍,马利科,王驹. 一种非稳态气体渗流条件下岩石渗透特性参数计算方法及应用. 岩土力学. 2019(05): 1721-1730 .
    4. 秦志军,龚传根,朱鹏辉,李雪浩,王伟. 干湿循环作用对大理岩渗透性影响的试验研究. 三峡大学学报(自然科学版). 2019(03): 6-10 .
    5. 冉艳霞,叶斌,程子睿. 致密岩石介质中气体滑脱效应的研究进展. 地质力学学报. 2018(04): 498-504 .
    6. 马戎荣,徐卫亚,刘攀. 基于正交设计的高重度相似材料三轴压缩试验研究. 河南科学. 2018(02): 215-221 .
    7. 巢志明,王环玲,徐卫亚,吉华,赵恺. 循环加卸载下柱状节理材料渗透率和孔隙度演化规律研究. 岩石力学与工程学报. 2017(01): 124-141 .
    8. 巢志明,王环玲,徐卫亚,杨兰兰,赵恺. 不同饱和度砂岩渗透率、孔隙度随应力变化规律研究. 岩石力学与工程学报. 2017(03): 665-680 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (397) PDF downloads (143) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return