LIU Xun, FENG Kun, XIAO Ming-qing, HE Chuan, LI Ce. PROTOTYPE TEST OF A NEW TYPE SEGMENT STRUCTURE WITH DISTRIBUTED MORTISES AND TENONS FOR SHIELD TUNNEL[J]. Engineering Mechanics, 2022, 39(1): 197-208. DOI: 10.6052/j.issn.1000-4750.2020.12.0913
Citation: LIU Xun, FENG Kun, XIAO Ming-qing, HE Chuan, LI Ce. PROTOTYPE TEST OF A NEW TYPE SEGMENT STRUCTURE WITH DISTRIBUTED MORTISES AND TENONS FOR SHIELD TUNNEL[J]. Engineering Mechanics, 2022, 39(1): 197-208. DOI: 10.6052/j.issn.1000-4750.2020.12.0913

PROTOTYPE TEST OF A NEW TYPE SEGMENT STRUCTURE WITH DISTRIBUTED MORTISES AND TENONS FOR SHIELD TUNNEL

More Information
  • Received Date: December 19, 2020
  • Revised Date: April 05, 2021
  • Available Online: June 03, 2021
  • Reinforcement measures are often employed to control dislocation and joint opening between rings of shield tunnels with large diameters. A full-scale test is conducted on staggered assembled segmental linings of Shiziyang Tunnel with four distributed mortises and tenons. The study aims to explore the mechanical properties and failure mechanism of the new type of segment with mortises and tenons. Variations and characteristics of structural deformation, dislocation and joint opening are discussed, and the failure mechanism and crack development of the structure are analyzed. The results show that the structural deformation of the new type of segment experiences a slow linear increase when the reinforcement of the centre ring is elastic, and a nonlinear increase when it is plastic; The deformation between rings is first manifested as dislocation, and the inter-ring interaction is provided by the friction of the contact surface. After the mortise and tenon contact, the inter-ring deformation is manifested as rotational opening. The longitudinal bolt bears bending moments while the mortise and tenon bear shear forces, and the inter-ring action is a combination of bending and shear; The initial crack of segmental linings occurs at the edge of the centre ring arch, and its failure mechanism is summarized as follows: concrete cracks cause the reinforcement to bear tension, and the cracks develop more deeply and widely, and then the reinforcement enters plasticity, and the structure finally loses stability and fails. The research results can provide reference for theoretical analysis and design of shield tunnels with large diameters.
  • [1]
    陈仁朋, 鲁立, 张阳, 等. 盾构管片UHPC加固技术及力学性能分析[J]. 工程力学, 2019, 36(11): 41 − 49. doi: 10.6052/j.issn.1000-4750.2018.11.0620

    Chen Renpeng, Lu Li, Zhang Yang, et al. Reinforced technology and mechanical properties of shield tunnel lining with UHPC [J]. Engineering Mechanics, 2019, 36(11): 41 − 49. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.11.0620
    [2]
    耿萍, 郭翔宇, 王琦, 等. 盾构隧道纵向接头局部足尺试验研究[J]. 土木工程学报, 2020, 53(1): 92 − 101, 128.

    Geng Ping, Guo Xiangyu, Wang Qi, et al. Pull-out test of longitudinal joints of shield tunnel [J]. China Civil Engineering Journal, 2020, 53(1): 92 − 101, 128. (in Chinese)
    [3]
    Liu Xian, Dong Zibo, Song Wei, et al. Investigation of the structural effect induced by stagger joints in segmental tunnel linings: direct insight from mechanical behaviors of longitudinal and circumferential joints [J]. Tunnelling and Underground Space Technology, 2018, 71: 271 − 291. doi: 10.1016/j.tust.2017.08.030
    [4]
    柳献, 张晨光, 张宸. 地铁盾构隧道纵向接缝承载能力试验研究与解析分析[J]. 土木工程学报, 2016, 49(10): 110 − 122.

    Liu Xian, Zhang Chenguang, Zhang Chen. Investigation on the ultimate bearing capacity of longitudinal joints in segmental tunnel lining [J]. China Civil Engineering Journal, 2016, 49(10): 110 − 122. (in Chinese)
    [5]
    Liu Xian, Zhang Yumeng, Bao Yihai. Full-scale experimental investigation on stagger effect of segmental tunnel lining [J]. Tunnelling and Underground Space Technology, 2020, 102: 103423-1 − 103423-14. doi: 10.1016/j.tust.2020.103423
    [6]
    Feng Kun, He Chuan, Qiu Yue, et al. Full-scale tests on bending behavior of segmental joints for large underwater shield tunnels [J]. Tunnelling and Underground Space Technology, 2018, 75(3): 100 − 116.
    [7]
    何川, 封坤, 方勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1): 97 − 109. doi: 10.3969/j.issn.0258-2724.2015.01.015

    He Chuan, Feng Kun, Fang Yong. Review and prospects on constructing technologies of metro tunnels using shield tunnelling method [J]. Journal of Southwest Jiaotong University, 2015, 50(1): 97 − 109. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.015
    [8]
    李宇杰, 何平, 秦东平. 盾构隧道管片纵缝错台的影响分析[J]. 工程力学, 2012, 29(11): 277 − 282. doi: 10.6052/j.issn.1000-4750.2011.04.0239

    Li Yujie, He Ping, Qin Dongping. Influence analysis on longitudinal dislocation for shield tunnel segment [J]. Engineering Mechanics, 2012, 29(11): 277 − 282. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.04.0239
    [9]
    耿萍, 唐睿, 陈枰良, 等. 考虑剪切作用的盾构隧道管片接头力学模型研究[J]. 工程力学, 2020, 37(3): 157 − 166. doi: 10.6052/j.issn.1000-4750.2019.04.0213

    Geng Ping, Tang Rui, Chen Cailiang, et al. Research of mechanical model of shield tunnel’s segment joint under the shearing effect [J]. Engineering Mechanics, 2020, 37(3): 157 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0213
    [10]
    李晓军, 黄伯麒, 朱合华, 等. 基于柔度法梁模型的盾构隧道衬砌结构纵向变形计算方法[J]. 工程力学, 2016, 33(4): 157 − 165, 187. doi: 10.6052/j.issn.1000-4750.2014.07.0606

    Li Xiaojun, Huang Boqi, Zhu Hehua, et al. Computation method for longitudinal deformation of shield tunnel lining structure based on flexibility beam model [J]. Engineering Mechanics, 2016, 33(4): 157 − 165, 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.07.0606
    [11]
    张景, 何川, 耿萍, 等. 盾构隧道环间接头弯曲状态非线性研究[J]. 工程力学, 2018, 35(11): 35 − 44. doi: 10.6052/j.issn.1000-4750.2017.08.0624

    Zhang Jing, He Chuan, Geng Ping, et al. Study on bending state nonlinearity of shield tunnel ring joints [J]. Engineering Mechanics, 2018, 35(11): 35 − 44. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.08.0624
    [12]
    张稳军, 张琪, 张高乐, 等. 天津地铁1.2 m管片环间榫式接头抗剪性能分析[J]. 地下空间与工程学报, 2020, 16(4): 1040 − 1047, 1061.

    Zhang Wenjun, Zhang Qi, Zhang Gaole, et al. Analysis on shear performance of 1.2 m segment ring tenon joint in Tianjin metro [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(4): 1040 − 1047, 1061. (in Chinese)
    [13]
    Putke D I T, Bohun R, Mark D I H P. Experimental analyses of an optimized shear load transfer in the circumferential joints of concrete segmental linings [J]. Structural Concrete, 2015, 16(4): 572 − 582. doi: 10.1002/suco.201500013
    [14]
    柳献, 张雨蒙, 王如路. 地铁盾构隧道衬砌结构变形及破坏探讨[J]. 土木工程学报, 2020, 53(5): 118 − 128.

    Liu Xian, Zhang Yumeng, Wang Rulu. Discussion on deformation and failure of segmental metro tunnel linings [J]. China Civil Engineering Journal, 2020, 53(5): 118 − 128. (in Chinese)
    [15]
    封坤, 何川, 苏宗贤. 南京长江隧道管片衬砌结构原型加载试验[J]. 中国公路学报, 2013, 26(1): 135 − 143. doi: 10.3969/j.issn.1001-7372.2013.01.019

    Feng Kun, He Chuan, Su Zongxian. Prototype loading test on segmental lining structure of Nanjing Yangze River Tunnel [J]. China Journal of Highway and Transport, 2013, 26(1): 135 − 143. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.01.019
    [16]
    封坤, 何川, 苏宗贤. 南京长江隧道原型管片结构破坏试验研究[J]. 西南交通大学学报, 2011, 46(4): 564 − 571. doi: 10.3969/j.issn.0258-2724.2011.04.007

    Feng Kun, He Chuan, Su Zongxian. Prototype test on failure characteristics of segmental lining structure for Nanjing Yangtze River Tunnel [J]. Journal of Southwest Jiaotong University, 2011, 46(4): 564 − 571. (in Chinese) doi: 10.3969/j.issn.0258-2724.2011.04.007
    [17]
    朱瑶宏, 张雨蒙, 夏杨于雨, 等. 通用环错缝拼装隧道极限承载能力足尺试验研究[J]. 现代隧道技术, 2012, 55(6): 152 − 162, 169. doi: 10.3969/j.issn.1009-6582.2012.06.024

    Zhu Yaohong, Zhang Yumeng, Xiayang Yuyu, et al. Experimental study on the ultimate bearing capacity of universal staggered ring tunnel [J]. Modern Tunneling Technology, 2012, 55(6): 152 − 162, 169. (in Chinese) doi: 10.3969/j.issn.1009-6582.2012.06.024
    [18]
    毕湘利, 柳献, 王秀志, 等. 通缝拼装盾构隧道结构极限承载力的足尺试验研究[J]. 土木工程学报, 2014, 47(10): 117 − 127.

    Bi Xiangli, Liu Xian, Wang Xiuzhi, et al. Experimental investigation on the ultimate bearing capacity of continuous-jointed segmental tunnel linings [J]. China Civil Engineering Journal, 2014, 47(10): 117 − 127. (in Chinese)
    [19]
    Zhang Li, Feng Kun, Gou Chao, et al. Failure tests and bearing performance of prototype segmental linings of shield tunnel under high water pressure [J]. Tunnelling and Underground Space Technology, 2019, 92: 103053-1 − 103053-15. doi: 10.1016/j.tust.2019.103053
    [20]
    廖少明, 门燕青, 肖明清, 等. 软土盾构法隧道纵向应力松弛规律的实测分析[J]. 岩土工程学报, 2017, 39(5): 795 − 80. doi: 10.11779/CJGE201705003

    Liao Shaoming, Men Yanqing, Xiao Mingqing, et al. Calculation of circular joint leakage considering the longitudinal stress relaxation along the shield tunnel [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 795 − 80. (in Chinese) doi: 10.11779/CJGE201705003
  • Cited by

    Periodical cited type(12)

    1. 闫鹏飞,蔡永昌. 网格无关的盾构管片面-面接触模型及接缝力学行为研究. 工程力学. 2025(05): 101-110+121 . 本站查看
    2. 赵何明. 盾壳挤压上浮盾构隧道引起环缝凸榫损伤研究. 铁道建筑技术. 2024(01): 138-141+153 .
    3. 李明宇,朱康康,陈健,蔺云宏,吴龙骥,靳军伟,杨潇. 考虑土体剪切与接头剪切效应的盾构隧道纵向变形计算模型. 中国铁道科学. 2024(01): 142-154 .
    4. 林刚,易丹,罗世培,晏启祥,张君臣. 带定位榫盾构隧道管片接头剪切力学行为研究. 北京交通大学学报. 2024(03): 130-139 .
    5. 樊献友,王海锋,姚峰,刘述森,陈阳. 复杂交互地层分布式凹凸榫管片大直径盾构隧道施工技术研究. 中国水运. 2024(10): 128-130 .
    6. 樊献友,王海锋,姚峰,刘述森,陈阳. 复杂交互地层分布式凹凸榫管片大直径盾构隧道施工技术研究. 中国水运. 2024(19): 128-130 .
    7. 邱伟,曾庆成,欧阳剑,沐海星,郭文琦,封坤,胡大伟. 盾构隧道凹凸榫-斜螺栓构造环缝抗剪力学性能研究. 现代隧道技术. 2024(06): 129-138 .
    8. 张迪,徐幼建,廖少明,陈睿杰,孙佳程. 盾构隧道凹凸榫-斜螺栓形式环缝径向顺剪抗剪刚度研究. 隧道建设(中英文). 2023(02): 228-239 .
    9. 梁荣柱,王理想,李忠超,康成,高坤,柯宅邦. 地表堆载对既有盾构隧道纵向变形影响. 建筑科学与工程学报. 2023(03): 130-141 .
    10. 鲁选一,封坤,漆美霖,郭文琦,何川,肖明清,王均勇. 纵向力作用下的盾构隧道管片结构纵向弯曲变形性能研究. 工程力学. 2023(07): 205-216 . 本站查看
    11. 赵森森,张冬梅,黄忠凯. 大直径盾构隧道分布式凹凸榫受力特性. 现代隧道技术. 2022(05): 54-62+79 .
    12. 王理想,梁荣柱,李忠超,康成,肖铭钊,吴文兵,高坤,郭杨. 基坑上跨开挖诱发既有盾构隧道隆起变形研究. 工程力学. 2022(12): 130-140 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (958) PDF downloads (93) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return