LU Xuan-yi, FENG Kun, QI Mei-lin, GUO Wen-qi, HE Chuan, XIAO Ming-qing, WANG Jun-yong. STUDY ON LONGITUDINAL BENDING DEFORMATION BEHAVIOR OF SHIELD TUNNEL SEGMENTS REGARDING THE ACTION OF LONGITUDINAL FORCE[J]. Engineering Mechanics, 2023, 40(7): 205-216. DOI: 10.6052/j.issn.1000-4750.2021.12.0945
Citation: LU Xuan-yi, FENG Kun, QI Mei-lin, GUO Wen-qi, HE Chuan, XIAO Ming-qing, WANG Jun-yong. STUDY ON LONGITUDINAL BENDING DEFORMATION BEHAVIOR OF SHIELD TUNNEL SEGMENTS REGARDING THE ACTION OF LONGITUDINAL FORCE[J]. Engineering Mechanics, 2023, 40(7): 205-216. DOI: 10.6052/j.issn.1000-4750.2021.12.0945

STUDY ON LONGITUDINAL BENDING DEFORMATION BEHAVIOR OF SHIELD TUNNEL SEGMENTS REGARDING THE ACTION OF LONGITUDINAL FORCE

More Information
  • Received Date: November 30, 2021
  • Revised Date: March 09, 2022
  • Accepted Date: March 24, 2022
  • Available Online: March 24, 2022
  • To investigate the longitudinal mechanical behavior of shield tunnels under the action of longitudinal forces, a longitudinal model test of a segment of the tunnel structure was carried out based on Wuhan Lianghu Tunnel (Donghu section). The vertical displacement and longitudinal strain of the tunnel are analyzed to reveal the influence of the longitudinal force on the longitudinal mechanical behavior of shield tunnels. The results show that: The longitudinal force can improve the longitudinal bending stiffness of shield tunnels, but the effect of the longitudinal force on the longitudinal bending stiffness increases first and then decreases with the increase of the vertical load. Taking the vertical loads of 3200 kN、9600 kN and 16 000 kN as an example, the maximum vertical displacement of the tunnel decreases by 45.5%, 56.8% and 62.7% respectively, when the vertical and longitudinal load ratio K is 0.56、1.67、2.78 respectively, but only decreases by 23.5% when the vertical load is 22 400 kN and K is 3.89. The longitudinal bending stiffness efficiency of the segment structure decreases with the increase of vertical load, which can be divided into three stages according to the reduction degree: The first stage is stiffness weakening, and the second stage is stiffness stabilizing, the third stage restores to the stage of stiffness weakening. Longitudinal bending stiffness efficiency is affected by both vertical load and longitudinal force. When the vertical load is constant, the smaller K is, the greater the longitudinal bending stiffness efficiency is. When the vertical load is 22 400 kN and K is reduced from 35 to 3.89, the longitudinal bending stiffness efficiency of shield tunnels decreases by 16.2%. Taking the midspan cross-section as an example, the neutral axis moves up with the deformation of the tunnel under the action of vertical load. Increasing longitudinal force can make the neutral axis move down and reach the position of the arch waist. The longitudinal bending stiffness efficiency obtained in this test is similar to the existing model test results in the absence of longitudinal force, but greater than the existing research results after considering the longitudinal force. The longitudinal bending stiffness efficiency should be considered with the influence of residual longitudinal force. and the recommended value is 0.218~0.696.
  • [1]
    耿萍, 唐睿, 陈枰良, 等. 考虑剪切作用的盾构隧道管片接头力学模型研究[J]. 工程力学, 2020, 37(3): 157 − 166. doi: 10.6052/j.issn.1000-4750.2019.04.0213

    GENG Ping, TANG Rui, CHEN Pingliang, et al. Research of mechanical model of shield tunnel’s segment joint under the shearing effect [J]. Engineering Mechanics, 2020, 37(3): 157 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0213
    [2]
    廖少明, 门燕青, 肖明清, 等. 软土盾构法隧道纵向应力松弛规律的实测分析[J]. 岩土工程学报, 2017, 39(5): 795 − 803.

    LIAO Shaoming, MEN Yanqing, XIAO Mingqing, et al. Field tests on longitudinal stress relaxation along shield tunnel in soft ground [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 795 − 803. (in Chinese)
    [3]
    志波由紀夫, 川島 一彦. シールドトンネルの耐震解析に用いる長手方向覆工剛性の評価法[J]. 东京: 土木学会论文集, 1988, 398: 319 − 327.

    SHIBA Y, KAWASHIMA T. Calculation of internal force of structure during earthquake using response displacement method [J]. Journal of JSCE, 1988, 398: 319 − 327. (in Japanese
    [4]
    张文杰, 徐旭, 李向红, 等. 广义的盾构隧道纵向等效连续化模型研究[J]. 岩石力学与工程学报, 2009, 28(增刊 2): 3938 − 3944.

    ZHANG Wenjie, XU Xu, LI Xianghong, et al. Research on generalized longitudinal equivalent continuous model of shield tunnels [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Suppl 2): 3938 − 3944. (in Chinese)
    [5]
    叶飞, 何川, 朱合华, 等. 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 33(12): 1870 − 1876.

    YE Fei, HE Chuan, ZHU Hehua, et al. Longitudinal equivalent rigidity analysis of shield tunnel considering transverse characteristics [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1870 − 1876. (in Chinese)
    [6]
    耿萍, 陈枰良, 张景, 等. 轴力和弯矩共同作用下盾构隧道纵向非线性等效抗弯刚度研究[J]. 岩石力学与工程学报, 2017, 36(10): 2522 − 2534.

    GENG Ping, CHEN Pingliang, ZHANG Jing, et al. Nonlinear longitudinal equivalent bending stiffness of shield tunnel under the combined effect of axial force and bending moment [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2522 − 2534. (in Chinese)
    [7]
    陈拴, 吴怀娜, 沈水龙, 等. 盾构隧道纵向结构变形模式及理论模型[J]. 土木工程学报, 2019, 52(增刊 1): 85 − 92.

    CHEN Shuan, WU Huaina, SHEN Shuilong, et al. Longitudinal structural deformation mode and theoretical model of shield tunnel [J]. China Civil Engineering Journal, 2019, 52(Suppl 1): 85 − 92. (in Chinese)
    [8]
    李晓军, 黄伯麒, 朱合华, 等. 基于柔度法梁模型的盾构隧道衬砌结构纵向变形计算方法[J]. 工程力学, 2016, 33(4): 157 − 165, 187. doi: 10.6052/j.issn.1000-4750.2014.07.0606

    LI Xiaojun, HUANG Boqi, ZHU Hehua, et al. computation method for longitudinal deformation of shield tunnel lining structure based on flexibility beam model [J]. Engineering Mechanics, 2016, 33(4): 157 − 165, 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.07.0606
    [9]
    柳献, 杨振华. 盾构隧道始发与到达段环间纵向压力空间分布规律研究[J]. 隧道建设(中英文), 2020, 40(11): 1552 − 1557.

    LIU Xian, YANG Zhenhua. Study on spatial distribution law of longitudinal pressure between launching and reaching sections of shield tunnel [J]. Tunnel Construction, 2020, 40(11): 1552 − 1557. (in Chinese)
    [10]
    方勇, 何川. 南京越江盾构隧道纵向抗弯能力研究[J]. 地下空间与工程学报, 2009, 5(4): 670 − 674.

    FANG Yong, HE Chuan. Study on the longitudinal anti-bending capacity of Nanjing cross-river shield tunnel [J]. Chinese Journal of Underground Space and Engineering, 2009, 5(4): 670 − 674. (in Chinese)
    [11]
    王金龙. 武汉地铁越江盾构隧道纵向不均匀变形及力学特性研究[J]. 现代隧道技术, 2012, 49(3): 87 − 93. doi: 10.3969/j.issn.1009-6582.2012.03.013

    WANG Jinlong. Study of the longitudinal uneven deformation and stress state of the shield tunnel crossing the Yangtze river [J]. Modern Tunnelling Technology, 2012, 49(3): 87 − 93. (in Chinese) doi: 10.3969/j.issn.1009-6582.2012.03.013
    [12]
    罗文林, 韩煊, 侯伟, 等. 盾构隧道纵向等效弯曲刚度的分析方法研究[J]. 现代隧道技术, 2017, 54(6): 8 − 14, 23.

    LUO Wenlin, HAN Xuan, HOU Wei, et al. Analysis method for the longitudinal equivalent bending stiffness of shield tunnels [J]. Modern Tunnelling Technology, 2017, 54(6): 8 − 14, 23. (in Chinese)
    [13]
    曹淞宇, 封坤, 刘迅, 等. 纵向力对盾构隧道管片结构内力分配机制的影响分析——以苏通GIL电力管廊隧道工程为例[J]. 隧道建设(中英文), 2019, 39(增刊 2): 154 − 162.

    CAO Songyu, FENG Kun, LIU Xun, et al. Analysis of influence of longitudinal force on internal force distribution mechanism of segments: A case study of Sutong GIL power tunnel project [J]. Tunnel Construction, 2019, 39(Suppl 2): 154 − 162. (in Chinese)
    [14]
    赵宝虎, 王燕群, 岳澄, 等. 盾构始发过程反力架应力监测与安全评价[J]. 工程力学, 2009, 26(9): 105 − 111.

    ZHAO Baohu, WANG Yanqun, YUE Cheng, et al. Stress monitoring and safety evaluation of the construction frame during shield originating [J]. Engineering Mechanics, 2009, 26(9): 105 − 111. (in Chinese)
    [15]
    徐凌. 软土盾构隧道纵向沉降研究 [D]. 上海: 同济大学, 2005.

    XU Ling. Longitudinal settlement of shield tunnel in soft soil [D]. Shanghai: Tongji University, 2005. (in Chinese)
    [16]
    魏立新, 杨春山, 黄海滨, 等. 盾构隧道纵向刚度及影响因素模型试验研究[J]. 公路, 2020, 65(1): 335 − 340.

    WEI Lixin, YANG Chunshan, HUANG Haibin, et al. Model test study on longitudinal stiffness and influencing factors of shield tunnel [J]. Highway, 2020, 65(1): 335 − 340. (in Chinese)
    [17]
    叶飞, 杨鹏博, 毛家骅, 等. 基于模型试验的盾构隧道纵向刚度分析[J]. 岩土工程学报, 2015, 37(1): 83 − 90.

    YE Fei, YANG Pengbo, MAO Jiahua, et al. Longitudinal rigidity of shield tunnels based on model tests [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 83 − 90. (in Chinese)
    [18]
    何川, 郭瑞, 肖明清, 等. 铁路盾构隧道单、双层衬砌纵向力学性能的模型试验研究[J]. 中国铁道科学, 2013, 34(3): 40 − 46.

    HE Chuan, GUO Rui, XIAO Mingqing, et al. Model test on longitudinal mechanical properties of single and double layered linings for railway shield tunnel [J]. China Railway Science, 2013, 34(3): 40 − 46. (in Chinese)
    [19]
    何应道. 铁路隧道管片衬砌纵向结构力学特征研究 [D]. 成都: 西南交通大学, 2009.

    HE Yingdao. Research on longitudinal mechanical characteristics of segment lining of railway tunnel [D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese)
    [20]
    鲁亮, 何燕清, 毕湘利, 等. 盾构隧道衬砌足尺整环结构试验方法研究[J]. 结构工程师, 2016, 32(1): 154 − 162. doi: 10.3969/j.issn.1005-0159.2016.01.025

    LU Liang, HE Yanqing, BI Xiangli, et al. Research on the experimental methods of whole-scale whole-ring shield-driven tunnel lining [J]. Structural Engineers, 2016, 32(1): 154 − 162. (in Chinese) doi: 10.3969/j.issn.1005-0159.2016.01.025
    [21]
    郭瑞. 盾构隧道管片衬砌结构稳定性问题研究 [D]. 成都: 西南交通大学, 2014.

    GUO Rui. Research on stability of segmental lining structure of shield tunnel [D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [22]
    王士民, 申兴柱, 何祥凡, 等. 不同拼装方式下盾构隧道管片衬砌受力与破坏模式模型试验研究[J]. 土木工程学报, 2017, 50(6): 114 − 124.

    WANG Shimin, SHEN Xingzhu, HE Xiangfan, et al. A model test for the mechanical property and failure mode of lining segments with different assembly types of shield tunnel [J]. China Civil Engineering Journal, 2017, 50(6): 114 − 124. (in Chinese)
    [23]
    徐国文, 王士民, 代光辉, 等. 基于内外分区割槽方式的盾构隧道接头环向模拟方法研究[J]. 铁道学报, 2016, 38(4): 90 − 97. doi: 10.3969/j.issn.1001-8360.2016.04.013

    XU Guowen, WANG Shimin, DAI Guanghui, et al. Research on radial joint simulation method for shield tunnel based on inner and peripheral zoning slotting [J]. Journal of the China Railway Society, 2016, 38(4): 90 − 97. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.04.013
    [24]
    封坤. 大断面水下盾构隧道管片衬砌结构的力学行为研究[D]. 成都: 西南交通大学, 2012.

    FENG Kun. Research on mechanical behavior of segmental lining structure for underwater shield tunnel with large cross-section [D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [25]
    刘迅, 封坤, 肖明清, 等. 盾构隧道新型分布榫式管片结构的局部原型试验研究[J]. 工程力学, 2022, 39(1): 197 − 208. doi: 10.6052/j.issn.1000-4750.2020.12.0913

    LIU Xun, FENG Kun, XIAO Mingqing, et al. Prototype test of a new type segment structure with distributed mortises and tenons for shield tunnel [J]. Engineering Mechanics, 2022, 39(1): 197 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0913
    [26]
    杨春山, 莫海鸿, 魏立新. 盾构隧道环向接头等效刚度修正计算及其影响因素研究[J]. 铁道科学与工程学报, 2017, 14(7): 1497 − 1504. doi: 10.3969/j.issn.1672-7029.2017.07.021

    YANG Chunshan, MO Haihong, WEI Lixin. Correction calculation for circumferential equivalent bolt stiffness of shield tunnel and the analysis of its influencing factors [J]. Journal of Railway Science and Engineering, 2017, 14(7): 1497 − 1504. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.07.021
    [27]
    沈圣, 吴智深, 杨才千, 等. 基于分布式光纤应变传感技术的盾构隧道横截面收敛变形监测方法[J]. 土木工程学报, 2013, 46(9): 104 − 116.

    SHEN Sheng, WU Zhishen, YANG Caiqian, et al. Convergence deformation monitoring of shield tunnels based on distributed optical fiber strain sensing technique [J]. China Civil Engineering Journal, 2013, 46(9): 104 − 116. (in Chinese)
    [28]
    沈圣, 吴智深, 杨才千, 等. 基于改进共轭梁法的盾构隧道纵向沉降分布监测策略[J]. 土木工程学报, 2013, 46(11): 112 − 121.

    SHEN Sheng, WU Zhishen, YANG Caiqian, et al. A monitoring strategy for longitudinal settlement of shield tunnel based on the improved conjugate beam method [J]. China Civil Engineering Journal, 2013, 46(11): 112 − 121. (in Chinese)
    [29]
    LI Xiaojun, ZHOU Xiaozhou, HONG Bichen, et al. Experimental and analytical study on longitudinal bending behavior of shield tunnel subjected to longitudinal axial forces [J]. Tunnelling and Underground Space Technology, 2019, 86: 128 − 137.
    [30]
    李翔宇, 刘国彬, 杨潇, 等. 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36(4): 662 − 670. doi: 10.11779/CJGE201404010

    LI Xiangyu, LIU Guobin, YANG Xiao, et al. Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 662 − 670. (in Chinese) doi: 10.11779/CJGE201404010
  • Cited by

    Periodical cited type(7)

    1. 曾友铭. 公路隧道钢纤维混凝土管片力学性能研究. 交通科技与管理. 2025(02): 120-122 .
    2. 闫鹏飞,蔡永昌. 网格无关的盾构管片面-面接触模型及接缝力学行为研究. 工程力学. 2025(05): 101-110+121 . 本站查看
    3. 苏昂,王峻,周欣,封坤,郭文琦. 水压对大直径盾构隧道错缝拼装管片结构的拼装效应研究. 现代交通与冶金材料. 2025(03): 65-73 .
    4. 叶飞,李思翰,刘畅,温小宝,韩兴博. 大直径盾构隧道纵向刚度增强措施研究. 地下空间与工程学报. 2024(03): 959-968 .
    5. 杨春山,徐世杨,魏立新,陈俊生. 垂直顶升作用下盾构隧道力学特性模型试验研究. 现代隧道技术. 2024(05): 210-218 .
    6. 赵金虎. 纵向力对盾构隧道管片结构力学性能的影响分析. 铁道建筑技术. 2023(08): 155-159 .
    7. 金明,张存,陈龙,袁云辉,王二丽. 基于精细化模型的盾构隧道纵向变形研究. 现代交通技术. 2023(06): 60-66 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (370) PDF downloads (63) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return