Citation: | YAN Peng-fei, CAI Yong-chang. MESH-INDEPENDENT SURFACE-SURFACE CONTACT MODEL AND MECHANICAL BEHAVIOR OF SEGMENTAL JOINT IN SHIELD TUNNEL[J]. Engineering Mechanics, 2025, 42(5): 101-110, 121. DOI: 10.6052/j.issn.1000-4750.2022.12.1097 |
The length and stiffness of contact surface at joints have significant effects on the bearing capacity and mechanical behavior of the shield tunnel lining. The conventional surface-surface contact model for segmental joint of shield tunnel shows obvious mesh dependency, which greatly weakens the application of numerical test in practical engineering. With the advantages of the numerical manifold method (NMM) that the mesh is not required to compatible with the geometric physical lines and its powerful unified analysis ability for discontinuous-continuous simulation, the NMM model for segmental joint is established, which can achieve a natural simulation for the discontinuity of shield tunnel lining at joints. Meanwhile, a novel contact model based on virtual-thin-layer (VTL) is proposed for segmental joint, including the generation algorithm for VTL elements with fixed integral points and the nonlinear iterative process for simulating the contact surface. The proposed method features concise algorithm, convenient numerical implementation and stable calculation results, which effectively avoids the mesh dependency. The comparison between the numerical results and the full-scale segmental joint experiment illustrates the efficiency and correctness of the proposed approach. On this basis, the influence of the length of contact surface on the joint mechanical behavior and the rotational stiffness of shield tunnel is further illustrated. The results show that with the decrease of the actual effective contact length, the opening displacement and rotation angle increase exponentially, and the rotational stiffness decreases significantly. Therefore, in the design and construction process of shield tunnel, attention should be paid to the contact length of segments and its assembling precision, and the actual joint stiffness should be analyzed and checked carefully.
[1] |
刘四进, 封坤, 何川, 等. 大断面盾构隧道管片接头抗弯力学模型研究[J]. 工程力学, 2015, 32(12): 215 − 224. doi: 10.6052/j.issn.1000-4750.2014.07.0599
LIU Sijin, FENG Kun, HE Chuan, et al. Study on the bending mechanical model of segmental joint in shield tunnel with large cross-section [J]. Engineering Mechanics, 2015, 32(12): 215 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.07.0599
|
[2] |
兰学平, 鲁亮, 刘利惠. 超大隧道衬砌管片接头力学性能试验研究[J]. 结构工程师, 2009, 25(5): 110 − 114. doi: 10.3969/j.issn.1005-0159.2009.05.021
LAN Xueping, LU Liang, LIU Lihui. Experimental study on mechanical properties for segment joints of super tunnel lining [J]. Structural Engineers, 2009, 25(5): 110 − 114. (in Chinese) doi: 10.3969/j.issn.1005-0159.2009.05.021
|
[3] |
张厚美, 傅德明, 过迟. 盾构隧道管片接头荷载试验研究[J]. 现代隧道技术, 2002, 39(6): 28 − 33, 41. doi: 10.3969/j.issn.1009-6582.2002.06.004
ZHANG Houmei, FU Deming, GUO Chi. Study on load test of segment joint in shield driven tunnel [J]. Modern Tunnelling Technology, 2002, 39(6): 28 − 33, 41. (in Chinese) doi: 10.3969/j.issn.1009-6582.2002.06.004
|
[4] |
彭益成, 丁文其, 沈碧伟, 等. 输水隧道单层衬砌管片接头抗弯力学特性研究[J]. 地下空间与工程学报, 2013, 9(5): 1065 − 1069, 1108.
PENG Yicheng, DING Wenqi, SHEN Biwei, et al. A study on flexural rigidity of single lining segment joint of Shanghai Qingcaosha water tunnel [J]. Chinese Journal of Underground Space and Engineering, 2013, 9(5): 1065 − 1069, 1108. (in Chinese)
|
[5] |
封坤, 何川, 肖明清. 高轴压作用下盾构隧道复杂接缝面管片接头抗弯试验[J]. 土木工程学报, 2016, 49(8): 99 − 110, 132. doi: 10.15951/j.tmgcxb.2016.08.012
FENG Kun, HE Chuan, XIAO Mingqing. Bending tests of segment joint with complex interface for shield tunnel under high axial pressure [J]. China Civil Engineering Journal, 2016, 49(8): 99 − 110, 132. (in Chinese) doi: 10.15951/j.tmgcxb.2016.08.012
|
[6] |
刘迅, 封坤, 肖明清, 等. 盾构隧道新型分布榫式管片结构的局部原型试验研究[J]. 工程力学, 2022, 39(1): 197 − 208. doi: 10.6052/j.issn.1000-4750.2020.12.0913
LIU Xun, FENG Kun, XIAO Mingqing, et al. Prototype test of a new type segment structure with distributed mortises and tenons for shield tunnel [J]. Engineering Mechanics, 2022, 39(1): 197 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0913
|
[7] |
陈正杰, 杨志豪, 李冬梅. 上海长江隧道管片纵缝力学性能的试验研究[J]. 地下工程与隧道, 2010(4): 17 − 19. doi: 10.13547/j.cnki.dxgcysd.2010.04.011
CHEN Zhengjie, YANG Zhihao, LI Dongmei. Study on mechanical properties of longitudinal joint of segmental lining of Shanghai Yangtze River tunnel [J]. Underground Engineering and Tunnels, 2010(4): 17 − 19. (in Chinese) doi: 10.13547/j.cnki.dxgcysd.2010.04.011
|
[8] |
张力, 苏芮, 何川, 等. 纯压弯受力下大断面盾构隧道管片接头抗弯足尺试验研究[J]. 隧道建设(中英文), 2020, 40(7): 997 − 1003.
ZHANG Li, SU Rui, HE Chuan, et al. Full-scale experimental study on bending performance of segmental joints of large cross-section shield tunnel under pure compressive bending condition [J]. Tunnel Construction, 2020, 40(7): 997 − 1003. (in Chinese)
|
[9] |
金瑞, 朱合华, 周龙, 等. 深埋排水盾构隧道高刚性管片接头力学性能试验研究[J]. 现代隧道技术, 2018, 55(增刊 2): 561 − 572. doi: 10.13807/j.cnki.mtt.2018.S2.073
JIN Rui, ZHU Hehua, ZHOU Long, et al. Experimental study on mechanical properties of high stiffness segment joints for deep-buried drainage shield tunnels [J]. Modern Tunnelling Technology, 2018, 55(Suppl 2): 561 − 572. (in Chinese) doi: 10.13807/j.cnki.mtt.2018.S2.073
|
[10] |
村上博智, 小泉淳. シールドセグメントリングの耐荷機構について[C]// 土木学会論文報告集. 東京: 土木学会, 1978: 103 − 115.
MURAKAMI H, KOIZUMI A. Study on load bearing capacity and mechanics of shield segment ring [C]// Proceedings of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 1978: 103 − 115. (in Japanese)
|
[11] |
朱合华, 周龙, 朱建文. 管片衬砌梁–弹簧广义模型及接头转动非线性模拟[J]. 岩土工程学报, 2019, 41(9): 1581 − 1590.
ZHU Hehua, ZHOU Long, JU Jianwen. Beam-spring generalized model for segmental lining and simulation of its nonlinear rotation [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1581 − 1590. (in Chinese)
|
[12] |
张建刚, 何川. 管片接头力学解析法: 改进条带算法[J]. 铁道学报, 2013, 35(3): 102 − 107. doi: 10.3969/j.issn.1001-8360.2013.03.016
ZHANG Jiangang, HE Chuan. Mechanical calculation method of segmental joints: Improved strip method [J]. Journal of the China Railway Society, 2013, 35(3): 102 − 107. (in Chinese) doi: 10.3969/j.issn.1001-8360.2013.03.016
|
[13] |
耿萍, 唐睿, 陈枰良, 等. 考虑剪切作用的盾构隧道管片接头力学模型研究[J]. 工程力学, 2020, 37(3): 157 − 166. doi: 10.6052/j.issn.1000-4750.2019.04.0213
GENG Ping, TANG Rui, CHEN Pingliang, et al. Research of mechanical model of shield tunnel’s segment joint under the shearing effect [J]. Engineering Mechanics, 2020, 37(3): 157 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0213
|
[14] |
志波由紀夫, 川島一彦, 大日方尚巳, 等. シールドトンネルの耐震解析に用いる長手方向覆工剛性の評価法[C]//土木学会论文集. 東京: 土木学会, 1988: 319 − 327.
SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses [C]// Proceedings of Journal of Structural Mechanics and Earthquake Engineering. Tokyo: Japan Society of Civil Engineers, 1988: 319 − 327. (in Japanese)
|
[15] |
李晓军, 黄伯麒, 朱合华, 等. 基于柔度法梁模型的盾构隧道衬砌结构纵向变形计算方法[J]. 工程力学, 2016, 33(4): 157 − 165, 187. doi: 10.6052/j.issn.1000-4750.2014.07.0606
LI Xiaojun, HUANG Boqi, ZHU Hehua, et al. Computation method for longitudinal deformation of sheild tunnel lining structure based on flexibility beam model [J]. Engineering Mechanics, 2016, 33(4): 157 − 165, 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.07.0606
|
[16] |
鲁选一, 封坤, 漆美霖, 等. 纵向力作用下的盾构隧道管片结构纵向弯曲变形性能研究[J]. 工程力学, 2023, 40(7): 205 − 216. doi: 10.6052/j.issn.1000-4750.2021.12.0945.
LU Xuanyi, FENG Kun, QI Meilin, et al. Study on longitudinal bending deformation behavior of shield tunnel segments regarding the action of longitudinal force [J]. Engineering Mechanics, 2023, 40(7): 205 − 216. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.12.0945.
|
[17] |
夏才初, 曾格华, 卞跃威. 盾构隧道管片环纵向接头抗弯刚度值的不动点迭代确定方法[J]. 岩石力学与工程学报, 2014, 33(5): 901 − 912. doi: 10.13722/j.cnki.jrme.2014.05.005
XIA Caichu, ZENG Gehua, BIAN Yuewei. Method for determining bending stiffness of shield tunnel segment rings longitudinal joint based on fix-point iteration [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 901 − 912. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.05.005
|
[18] |
GOODMAN R E, TAYLOR R L, BREKKE T L. A model for the mechanics of jointed rock [J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(3): 637 − 659. doi: 10.1061/JSFEAQ.0001133
|
[19] |
李守德, 俞洪良. Goodman接触面单元的修正与探讨[J]. 岩石力学与工程学报, 2004, 23(15): 2628 − 2631. doi: 10.3321/j.issn:1000-6915.2004.15.027
LI Shoude, YU Hongliang. Modification of Goodman interface element [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2628 − 2631. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.15.027
|
[20] |
UNDERHILL W R C, DOKAINISH M A, ORAVAS G Æ. A method for contact problems using virtual elements [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 143(3/4): 229 − 247.
|
[21] |
SHI G H. Manifold method of material analysis [C]// Transactions of the 9th Army Conference on Applied Mathematics and Computing. Minneapolis: U. S. Army Research Office, 1991: 57 − 76.
|
[22] |
MA G W, AN X M, HE L. The numerical manifold method: A review [J]. International Journal of Computational Methods, 2010, 7(1): 1 − 32. doi: 10.1142/S0219876210002040
|
[23] |
李树忱, 李术才, 张京伟, 等. 数值流形方法的数学推导及其应用[J]. 工程力学, 2007, 24(6): 36 − 42. doi: 10.3969/j.issn.1000-4750.2007.06.007
LI Shuchen, LI Shucai, ZHANG Jingwei, et al. Numerical manifold method from mathematical theory and its application [J]. Engineering Mechanics, 2007, 24(6): 36 − 42. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.06.007
|
[24] |
魏高峰, 冯伟. 四节点四边形数值流形方法及其改进[J]. 力学季刊, 2006, 27(1): 112 − 117. doi: 10.3969/j.issn.0254-0053.2006.01.015
WEI Gaofeng, FENG Wei. Four nodal quadrilateral numerical manifold method and its improvement [J]. Chinese Quarterly of Mechanics, 2006, 27(1): 112 − 117. (in Chinese) doi: 10.3969/j.issn.0254-0053.2006.01.015
|
[25] |
YANG Y T, SUN G H, ZHENG H. A high-order numerical manifold method with continuous stress/strain field [J]. Applied Mathematical Modelling, 2020, 78: 576 − 600. doi: 10.1016/j.apm.2019.09.034
|
[26] |
WU Y Q, CHEN G Q, JIANG Z S, et al. Research on fault cutting algorithm of the three-dimensional numerical manifold method [J]. International Journal of Geomechanics, 2017, 17(5): E4016003. doi: 10.1061/(ASCE)GM.1943-5622.0000655
|
[27] |
HE L, AN X M, ZHAO Z Y. Development of contact algorithm for three-dimensional numerical manifold method [J]. International Journal for Numerical Methods in Engineering, 2014, 97(6): 423 − 453. doi: 10.1002/nme.4591
|
[28] |
FAN H, HUANG D R, WANG G. A four-way enhanced numerical manifold method for crack propagation and failure analysis of rock slopes [J]. Applied Mathematical Modelling, 2021, 95: 623 − 643. doi: 10.1016/j.apm.2021.02.025
|
[29] |
XU X Y, WU Z J, LIU Q S. An improved numerical manifold method for investigating the mechanism of tunnel supports to prevent large squeezing deformation hazards in deep tunnels [J]. Computers and Geotechnics, 2022, 151: 104941. doi: 10.1016/j.compgeo.2022.104941
|
[30] |
WONG L N Y, WU Z J. Application of the numerical manifold method to model progressive failure in rock slopes [J]. Engineering Fracture Mechanics, 2014, 119: 1 − 20. doi: 10.1016/j.engfracmech.2014.02.022
|
[31] |
CAI Y C, ZHU H H. A locking-free nine-DOF triangular plate element with incompatible approximation [J]. International Journal for Numerical Methods in Engineering, 2017, 109(7): 915 − 935. doi: 10.1002/nme.5307
|
[32] |
郑宏. 数值流形法[M]. 北京: 科学出版社, 2022.
ZHENG Hong. Numerical manifold method [M]. Beijing: Science Press, 2022. (in Chinese)
|
[33] |
夏海平. 盾构隧道纵缝接头的破坏试验和三维数值模型研究[D]. 上海: 同济大学, 2014.
XIA Haiping. Research on bending test and 3D numerical model of longitudinal joint of shield tunnel of Shanghai Metro [D]. Shanghai: Tongji University, 2014. (in Chinese)
|
[34] |
张雪健, 庄晓莹, 朱合华. 盾构隧道管片接头三维数值模型边界条件研究[C]// 第十三届海峡两岸隧道与地下工程学术及技术研讨会论文集. 南宁: 中国岩石力学与工程学会, 2014: 153 − 158.
ZHANG Xuejian, ZHUANG Xiaoying, ZHU Hehua. Study on boundary conditions of three-dimensional numerical models for segment joints [C]// Proceedings of the Thirteenth Cross-strait Symposium on Tunnels and Underground Works. Nanning: Chinese Society for Rock Mechanics & Engineering, 2014: 153 − 158. (in Chinese)
|