Processing math: 100%

基于现行混凝土结构设计规范的盾构隧道管片接头抗弯承载力理论改进模型研究

张景轩, 张力, 封坤, 何川, 方砚兵, 刘肖汇, 周子扬

张景轩, 张力, 封坤, 何川, 方砚兵, 刘肖汇, 周子扬. 基于现行混凝土结构设计规范的盾构隧道管片接头抗弯承载力理论改进模型研究[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2024.09.0734
引用本文: 张景轩, 张力, 封坤, 何川, 方砚兵, 刘肖汇, 周子扬. 基于现行混凝土结构设计规范的盾构隧道管片接头抗弯承载力理论改进模型研究[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2024.09.0734
ZHANG Jing-xuan, ZHANG Li, FENG Kun, HE Chuan, FANG Yan-bing, LIU Xiao-hui, ZHOU Zi-yang. RESEARCH ON THEORETICAL IMPROVEMENT MODEL OF BENDING CAPACITY OF SHIELD TUNNEL SEGMENT JOINTS UPON CURRENT CONCRETE STRUCTURE DESIGN CODES[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.09.0734
Citation: ZHANG Jing-xuan, ZHANG Li, FENG Kun, HE Chuan, FANG Yan-bing, LIU Xiao-hui, ZHOU Zi-yang. RESEARCH ON THEORETICAL IMPROVEMENT MODEL OF BENDING CAPACITY OF SHIELD TUNNEL SEGMENT JOINTS UPON CURRENT CONCRETE STRUCTURE DESIGN CODES[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.09.0734

基于现行混凝土结构设计规范的盾构隧道管片接头抗弯承载力理论改进模型研究

基金项目: 国家重点研发计划项目(2021YFB2600900);国家自然科学基金项目(52078430)
详细信息
    作者简介:

    张景轩(1995−),男,四川人,博士生,主要从事现代盾构隧道设计理论的研究(E-mail: cheungjens@126.com)

    张 力(1994−),男,湖北人,讲师,博士,主要从事现代盾构隧道设计理论的研究(E-mail: lizhang1896@163.com)

    何 川(1964−),男,重庆人,中国工程院院士,博士,主要从事大型复杂隧道工程的结构分析与安全控制研究(E-mail: chuanhe21@163.com)

    方砚兵(1991−),男,湖南人,博士,主要从事隧道结构长寿命设计理论的研究(E-mail: 1chuan12@163.com)

    刘肖汇(2000−),男,江西人,硕士生,主要从事现代盾构隧道设计理论的研究(E-mail: liuxiaohui0918@foxmail.com)

    周子扬(1997−),男,湖南人,博士生,主要从事现代盾构隧道设计理论的研究(E-mail: 344478047@qq.com)

    通讯作者:

    封 坤(1983−),男,陕西人,教授,博士,主要从事现代盾构隧道设计理论与隧道结构长寿命设计理论的研究(E-mail: windfeng813@163.com)

  • 中图分类号: U451+.4

RESEARCH ON THEORETICAL IMPROVEMENT MODEL OF BENDING CAPACITY OF SHIELD TUNNEL SEGMENT JOINTS UPON CURRENT CONCRETE STRUCTURE DESIGN CODES

  • 摘要:

    盾构隧道管片接头最新一代防水结构体系的显著特征为双道防水沟槽,区别于将防水沟槽分别布置在接缝面内外两侧的设计方案,目前双沟槽统一布置在接缝面外侧的设计正应用于工程实际。以往基于内外双侧防水沟槽接头型式建立的抗弯承载力计算模型未考虑截面的非对称特性,并且采用的混凝土材料本构相对简单,将该模型直接应用于外侧双道防水接头的抗弯承载力计算的适配问题值得详细探讨。鉴于此,引入形心轴表征接缝面的非对称几何特性,并基于现行混凝土结构设计规范附录C中所推荐的混凝土本构模型,计算了对应的矩形应力图等效系数,代入到推导的盾构隧道接头抗弯承载力方程实现模型转换,从而建立了改进的计算模型;进一步地,结合接头抗弯足尺试验讨论了改进模型的适配性与精准度,最后分析了防水沟槽布设方式对接头承载力的具体影响。结果表明:基于改进模型计算外侧双道防水接头抗弯承载力的精度明显优于现有模型;两种模型计算内外双道防水接头抗弯承载力的精度在正弯时差异不大,而在负弯时的改进模型计算精度相对较高;防水槽设计参数的改变对外侧双道防水接头承载力产生较强的非线性相关影响,对内外双道防水接头承载力产生近似线性相关影响。文章所提改进模型可为盾构隧道接头抗弯性能的安全评估以及接头型式的设计提供重要参考。

    Abstract:

    The latest generation waterproof structural system for shield tunnel segment joints features a dual-channel waterproof groove, distinguishing it from previous designs where the waterproof grooves were arranged separately on both sides of the joint surface. The current design, with both grooves positioned on the outer side of the joint, is already being applied in practical engineering. Previous bending resistance calculation models for segment joints, based on the dual-channel waterproof groove configuration on both the inner and outer sides, did not consider the asymmetric nature of the cross-section, and the concrete material model used was relatively simple. This raises concerns about the suitability of directly applying these models to calculate the bending resistance of the outer dual-channel waterproof joints. To address this, the study introduces the centroid axis to characterize the asymmetric geometric properties of the joint surface and uses the concrete material model recommended in Appendix C of the current concrete structure design code to calculate the corresponding equivalent factors of the rectangular stress diagram. These factors were then incorporated into the derived bending resistance equation for shield tunnel joints, resulting in an improved calculation model. Furthermore, the improved model's adaptability and accuracy were discussed upon the bending tests of full-scale joints, and the influence of the waterproof groove layout on the joint's load-bearing capacity was analyzed. The results show that the accuracy of the bending resistance calculation for the outer dual-channel waterproof joints based on the model improved is significantly better than those of the existing model. For both inner and outer dual-channel waterproof joints, the accuracy of the models is similar under positive bending, but the model improved provides higher accuracy under negative bending. The change in waterproof groove design parameters has a strong nonlinear impact on the load-bearing capacity of the outer dual-channel waterproof joints, while it exhibits an approximately linear relationship for the inner and outer dual-channel waterproof joints. The improved model proposed provides an important reference for the safety assessment of the bending performance of shield tunnel joints and the for the design of joint configurations.

  • 图  1   基于现行混凝土结构设计规范的接头抗弯力学模型

    Figure  1.   Bending mechanical model of joints based on current code of design of concrete structures

    图  2   基于现行混凝土结构设计规范的接头材料本构模型

    Figure  2.   Mechanical model of joint materials based on current code of design of concrete structures

    图  3   盾构隧道管片接头抗弯承载力计算流程

    Figure  3.   Calculation flowchart for bending bearing capacity of shield tunnel segment joints

    图  4   甬舟铁路海底盾构隧道管片接头型式及几何尺寸

    Figure  4.   Joint types and dimensions of the subsea shield tunnel for the Yongzhou railway

    图  5   某输气盾构隧道管片接头型式及几何尺寸

    Figure  5.   Joint types and dimensions of the gas transmission shield tunnel

    图  6   采用不同模型计算甬舟铁路盾构隧道接头抗弯承载力

    Figure  6.   Calculation of bending capacity for Yongzhou railway shield tunnel joints using different bending capacity models

    图  8   甬舟铁路盾构隧道接头抗弯试验装置及试件

    Figure  8.   Test setup and specimen for bending tests on Yongzhou railway shield tunnel joints

    图  9   甬舟铁路盾构隧道接头抗弯试验加载示意

    Figure  9.   Schematic of loading for bending tests on Yongzhou railway shield tunnel joints

    图  10   受正负弯时甬舟铁路盾构隧道接头破坏图

    Figure  10.   Failures of Yongzhou railway shield tunnel joints under positive and negative bending

    图  11   某输气盾构隧道接头抗弯试件

    Figure  11.   Bending test specimens for the gas transmission shield tunnel

    图  12   某输气盾构隧道接头抗弯试验加载示意

    Figure  12.   Schematic of loading for bending tests on gas transmission shield tunnel joints

    图  13   受正负弯时某输气盾构隧道接头破坏图

    Figure  13.   Failures of gas transmission shield tunnel joints under positive and negative bending

    图  7   采用不同模型计算某输气盾构隧道接头抗弯承载力

    Figure  7.   Calculation of bending capacity for the gas transmission shield tunnel using different bending capacity models

    图  14   布设不同外侧双道防水位置时的接头抗弯承载力曲线

    Figure  14.   Curves of bending capacity of joints for different external double-layer waterproofing arrangements

    图  15   布设不同内外双道防水位置时的接头抗弯承载力曲线

    Figure  15.   Curves of bending capacity of joints for different internal and external double-layer waterproofing arrangements

    图  16   不同外侧双道防水槽大小时的接头抗弯承载力曲线

    Figure  16.   Curves of bending load capacity of joints for varying sizes of external double-layer waterproof trenches

    图  17   不同内外双道防水槽大小时的接头抗弯承载力曲线

    Figure  17.   Curves of bending load capacity of joints for varying sizes of internal and external double-layer waterproof trenches

    表  1   不同混凝土等级对应的矩形应力图系数

    Table  1   Coefficients of rectangular stress diagram for different concrete grades

    混凝土等级α1β1
    C500.77940.9669
    C550.78350.9586
    C600.78690.951
    C650.78990.9441
    C700.79240.9377
    下载: 导出CSV

    表  2   甬舟铁路盾构隧道接头抗弯承载力值对比

    Table  2   Comparison of bending capacity values for Yongzhou railway shield tunnel joints

    接头受荷状态分析手段弯矩/(kN·m)差异/(%)
    正弯接头抗正弯试验1108.41
    本文所提改进模型1043.725.84
    未改进承载力模型683.8938.3
    负弯接头抗负弯试验1026.54
    本文所提改进模型1052.972.57
    未改进承载力模型1308.2527.44
    下载: 导出CSV

    表  3   某输气盾构隧道接头抗弯承载力值对比

    Table  3   Comparison of bending capacity values for east route sino-russian shield tunnel crossing the yangtze river joints

    接头受荷状态分析手段弯矩/(kN·m)差异/(%)
    正弯接头抗正弯试验295.68
    本文所提改进模型276.486.49
    未改进承载力模型309.294.61
    负弯接头抗负弯试验291.58
    本文所提改进模型294.721.08
    未改进承载力模型319.519.58
    下载: 导出CSV
  • [1] 何川, 封坤. 大断面盾构隧道结构整体化分析方法[J]. 隧道建设(中英文), 2021, 41(11): 1827 − 1848.

    HE Chuan, FENG Kun. Integrated analysis method for shield tunnel structure with large cross-section [J]. Tunnel Construction, 2021, 41(11): 1827 − 1848. (in Chinese)

    [2] 朱旻, 陈湘生, 王雪涛. 盾构隧道衬砌结构性能演化分析与思考[J]. 工程力学, 2022, 39(3): 33 − 50. doi: 10.6052/j.issn.1000-4750.2021.07.ST05

    ZHU Min, CHEN Xiangsheng, WANG Xuetao. Analysis and thinking on structural performance evolution of shield tunnel lining [J]. Engineering Mechanics, 2022, 39(3): 33 − 50. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.ST05

    [3] 封坤, 何川, 肖明清. 高轴压作用下盾构隧道复杂接缝面管片接头抗弯试验[J]. 土木工程学报, 2016, 49(8): 99 − 110, 132.

    FENG Kun, HE Chuan, XIAO Mingqing. Bending tests of segment joint with complex interface for shield tunnel under high axial pressure [J]. China Civil Engineering Journal, 2016, 49(8): 99 − 110, 132. (in Chinese)

    [4] 曹淞宇, 封坤, 刘迅, 等. 纵向力对带榫管片环缝剪切破坏机制影响研究[J]. 中国公路学报, 2021, 34(9): 273 − 284. doi: 10.3969/j.issn.1001-7372.2021.09.023

    CAO Songyu, FENG Kun, LIU Xun, et al. Experimental investigation of the shear mechanism on mortise and tenon segment lining [J]. China Journal of Highway and Transport, 2021, 34(9): 273 − 284. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.09.023

    [5] 刘迅, 封坤, 肖明清, 等. 盾构隧道新型分布榫式管片结构的局部原型试验研究[J]. 工程力学, 2022, 39(1): 197 − 208. doi: 10.6052/j.issn.1000-4750.2020.12.0913

    LIU Xun, FENG Kun, XIAO Mingqing, et al. Prototype test of a new type segment structure with distributed mortises and tenons for shield tunnel [J]. Engineering Mechanics, 2022, 39(1): 197 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0913

    [6] 邱月, 何聪, 何川, 等. 输气盾构隧道原型管片接缝弯压破坏试验[J]. 土木工程学报, 2020, 53(7): 108 − 115, 128.

    QIU Yue, HE Cong, HE Chuan, et al. Prototype failure tests of segmental joints for gas transmission shield tunnel under bending-compression load [J]. China Civil Engineering Journal, 2020, 53(7): 108 − 115, 128. (in Chinese)

    [7] 随意, 程晓辉, 李官勇, 等. 基于分布式光纤监测的盾构隧道管片变形受力反演分析[J]. 工程力学, 2022, 39(增刊1): 158 − 163. doi: 10.6052/j.issn.1000-4750.2021.06.S031

    SUI Yi, CHENG Xiaohui, LI Guanyong, et al. Inversion analysis of deformation and force of shield tunnel segments based on distributed optical-fibre monitoring [J]. Engineering Mechanics, 2022, 39(Suppl 1): 158 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.S031

    [8] 鲁选一, 封坤, 漆美霖, 等. 纵向力作用下的盾构隧道管片结构纵向弯曲变形性能研究[J]. 工程力学, 2023, 40(7): 205 − 216. doi: 10.6052/j.issn.1000-4750.2021.12.0945

    LU Xuanyi, FENG Kun, QI Meilin, et al. Study on longitudinal bending deformation behavior of shield tunnel segments regarding the action of longitudinal force [J]. Engineering Mechanics, 2023, 40(7): 205 − 216. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.12.0945

    [9] 张稳军, 张新新, 张云旆. 斜螺栓等级对盾构隧道接头受力和变形的影响[J]. 地下空间与工程学报, 2018, 14(增刊1): 227 − 234.

    ZHANG Wenjun, ZHANG Xinxin, ZHANG Yunpei. Influence of inclined bolt grade on bearing capacity and deformation of shield tunnel joint [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(Suppl 1): 227 − 234. (in Chinese)

    [10] 张稳军, 张云旆, 宋晓龙. 盾构隧道弯螺栓接头力学特性受预紧力影响的数值研究[J]. 岩土工程学报, 2017, 39(增刊2): 203 − 206. doi: 10.11779/CJGE2017S2049

    ZHANG Wenjun, ZHANG Yunpei, SONG Xiaolong. Numerical study on mechanical behavior of bent bolted connection in shield tunnel under effect of preload [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 203 − 206. (in Chinese) doi: 10.11779/CJGE2017S2049

    [11] 赵森森, 张冬梅, 黄忠凯. 大直径盾构隧道分布式凹凸榫受力特性[J]. 现代隧道技术, 2022, 59(5): 54 − 62, 79.

    ZHAO Sensen, ZHANG Dongmei, HUANG Zhongkai. Mechanical characteristics of distributed mortise-and-tenon of large-diameter shield tunnels [J]. Modern Tunnelling Technology, 2022, 59(5): 54 − 62, 79. (in Chinese)

    [12]

    ZHANG L, FENG K, LIU Y T, et al. Investigation of the compression-bending capacity evaluation of non-bolted segmental joints [J]. Tunnelling and Underground Space Technology, 2023, 140: 105294. doi: 10.1016/j.tust.2023.105294

    [13]

    LIU X H, ZHANG J X, FENG K, et al. Shear deformation characteristics and failure mechanisms of tunnel segment inter-ring joints: Numerical and experimental study [J]. Engineering Failure Analysis, 2024, 158: 108045. doi: 10.1016/j.engfailanal.2024.108045

    [14]

    ZHANG L, FENG K, HE C, et al. Experimental study on compression–bending damage of segmental joints based on acoustic emission [J]. Tunnelling and Underground Space Technology, 2021, 115: 104078. doi: 10.1016/j.tust.2021.104078

    [15]

    GUO W Q, FENG K, LU X Y, et al. Experimental investigation on the damage evolution and failure mechanism of segmental joints based on DOFS and AE [J]. Engineering Failure Analysis, 2023, 152: 107471. doi: 10.1016/j.engfailanal.2023.107471

    [16]

    GUO W Q, FENG K, ZHOU Y L, et al. Full-scale test and numerical modeling on deformation and damage behavior of segmental joints under ultimate compression-bending load [J]. Engineering Structures, 2023, 279: 115648. doi: 10.1016/j.engstruct.2023.115648

    [17] 庄晓莹, 张雪健, 朱合华. 盾构管片接头破坏的弹塑性-损伤三维有限元模型研究[J]. 岩土工程学报, 2015, 37(10): 1826 − 1834. doi: 10.11779/CJGE201510011

    ZHUANG Xiaoying, ZHANG Xuejian, ZHU Hehua. 3-D finite element model for destruction process of segment joints of shield tunnel using elastoplastic and damage constitutive methods [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1826 − 1834. (in Chinese) doi: 10.11779/CJGE201510011

    [18] 张冬梅, 刘杰, 李保军, 等. 大直径盾构隧道斜螺栓环缝抗剪特性研究[J]. 中国公路学报, 2020, 33(12): 142 − 153. doi: 10.3969/j.issn.1001-7372.2020.12.011

    ZHANG Dongmei, LIU Jie, LI Baojun, et al. Shearing behavior of circumferential joints with oblique bolts in large diameter shield tunnel [J]. China Journal of Highway and Transport, 2020, 33(12): 142 − 153. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.011

    [19] 龚琛杰, 丁文其. 盾构隧道钢纤维混凝土管片接头极限承载力试验[J]. 中国公路学报, 2017, 30(8): 134 − 142. doi: 10.3969/j.issn.1001-7372.2017.08.015

    GONG Chenjie, DING Wenqi. Experimental investigation on ultimate bearing capacity of steel fiber reinforced concrete segment joints in shield tunnels [J]. China Journal of Highway and Transport, 2017, 30(8): 134 − 142. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.015

    [20]

    JIN Y L, DING W Q, YAN Z G, et al. Experimental investigation of the nonlinear behavior of segmental joints in a water-conveyance tunnel [J]. Tunnelling and Underground Space Technology, 2017, 68: 153 − 166. doi: 10.1016/j.tust.2017.05.018

    [21] 邱月, 何川, 封坤, 等. 盾构隧道管片衬砌拼装效应局部原型结构加载试验[J]. 中国公路学报, 2017, 30(8): 156 − 163, 215. doi: 10.3969/j.issn.1001-7372.2017.08.018

    QIU Yue, HE Chuan, FENG Kun, et al. Local prototype loading test on segmental lining structure of shield tunnel under assembling effect [J]. China Journal of Highway and Transport, 2017, 30(8): 156 − 163, 215. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.018

    [22] 张力, 封坤, 何川, 等. 盾构隧道管片接头三维精细化数值模拟研究[J]. 隧道建设(中英文), 2020, 40(8): 1169 − 1175.

    ZHANG Li, FENG Kun, HE Chuan, et al. Three-dimensional refined numerical simulation of segmental joint of shield tunnel [J]. Tunnel Construction, 2020, 40(8): 1169 − 1175. (in Chinese)

    [23]

    LIU X, ZHANG C, ZHANG C G, et al. Ultimate load-carrying capacity of the longitudinal joints in segmental tunnel linings [J]. Structural Concrete, 2017, 18(5): 693 − 709. doi: 10.1002/suco.201600070

    [24] 肖明清, 封坤, 张力, 等. 盾构隧道管片接头抗弯承载力计算模型研究[J]. 土木工程学报, 2019, 52(11): 108 − 119.

    XIAO Mingqing, FENG Kun, ZHANG Li, et al. A calculation model of flexural bearing capacity of segmental joint for shield tunnels [J]. China Civil Engineering Journal, 2019, 52(11): 108 − 119. (in Chinese)

    [25] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)

    [26] 李拼, 谢宏明, 何川, 等. 基于有效接触应力的大张开量盾构隧道密封垫防水性能分析[J]. 隧道建设(中英文), 2019, 39(12): 1993 − 1999.

    LI Pin, XIE Hongming, HE Chuan, et al. Waterproof performance analysis of water sealing gasket of large open shield tunnel based on effective contact stress [J]. Tunnel Construction, 2019, 39(12): 1993 − 1999. (in Chinese)

    [27] 王士民, 谢宏明. 高水压盾构隧道管片接缝防水研究现状与展望[J]. 隧道与地下工程灾害防治, 2020, 2(2): 66 − 75.

    WANG Shimin, XIE Hongming. Review and prospect of waterproofing of segment joints of shield tunnel with high hydraulic pressure [J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(2): 66 − 75. (in Chinese)

    [28] 肖明清, 谢宏明, 王士民, 等. 盾构隧道管片接缝防水体系演化历程与展望[J]. 隧道建设(中英文), 2021, 41(11): 1891 − 1902.

    XIAO Mingqing, XIE Hongming, WANG Shimin, et al. Evolution and prospects of shield tunnel joints and segment waterproofing systems [J]. Tunnel Construction, 2021, 41(11): 1891 − 1902. (in Chinese)

  • 期刊类型引用(15)

    1. 张海燕,陈海标,吴波,李梦圆. 纤维网增强地聚物砂浆加固双向板的抗弯性能. 华南理工大学学报(自然科学版). 2025(02): 115-123 . 百度学术
    2. 钟正强,刘珺,郭凯军,陈子慕. 端锚CFRP网格U型箍加固RC箱梁抗弯性能试验. 建筑科学与工程学报. 2025(02): 93-100 . 百度学术
    3. 杨雨峤,朱健. 纤维编织网增强砂浆加固泵站梁抗剪性能的数值研究. 水利技术监督. 2024(02): 205-210 . 百度学术
    4. 石姗姗,吕航宇,吕超雨,苏智博,孙直. 随机多孔碳纤维纸的非线性面外压缩本构模型. 工程力学. 2023(01): 249-256 . 本站查看
    5. 王博,王媛媛,王征鹏,张军雷,王天松. CFRP网格-聚合物水泥砂浆加固RC梁抗剪承载力计算方法. 复合材料学报. 2023(02): 990-1003 . 百度学术
    6. 刘决丁,范向前,叶宇霄,葛菲. 基于解析方法的FRP增强混凝土梁失稳前断裂过程分析. 工程力学. 2023(10): 129-140 . 本站查看
    7. 王青. 纤维网格增强超高性能混凝土加固钢筋混凝土梁受剪性能试验研究. 菏泽学院学报. 2023(05): 65-71 . 百度学术
    8. 吴小宾,陈鹏,高峰. 基于加固效费比的砌体结构抗震加固方案优选方法研究. 工程力学. 2022(05): 167-176 . 本站查看
    9. 郭莉英,邓明科,马钰人,张雨顺,张伟. 纤维网格高延性混凝土加固RC柱抗剪性能试验研究. 工程力学. 2022(06): 43-54 . 本站查看
    10. 陈军锋,刘孙文,周哲,赵超,陈渊. 玄武岩纤维织物增强砂浆薄板抗弯性能试验研究. 四川建材. 2022(10): 24-25 . 百度学术
    11. 邓明科,宋诗飞,张敏,马福栋,陈尚城,张阳玺. 高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算. 工程力学. 2021(09): 36-44+63 . 本站查看
    12. 张童,雷真,朱争光,吴亚玲. 地震作用下纤维编织网增强钢筋混凝土柱的抗震性能分析. 地震工程学报. 2020(01): 57-62+72 . 百度学术
    13. 刘岩,叶涛萍,曹万林. 地聚物混凝土结构研究与发展. 自然灾害学报. 2020(04): 8-19 . 百度学术
    14. 张劲泉,李鹏飞,韦韩,王仙. 注浆加固预应力混凝土空心板梁抗剪性能试验研究. 工程力学. 2020(S1): 32-41 . 本站查看
    15. 邓明科,郭莉英,李睿喆,陈佳莉. 高延性混凝土加固钢筋混凝土梁抗震性能试验研究. 工程力学. 2020(11): 47-57 . 本站查看

    其他类型引用(13)

图(17)  /  表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  1
  • PDF下载量:  8
  • 被引次数: 28
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2025-01-03
  • 网络出版日期:  2025-01-16

目录

    /

    返回文章
    返回