基于解析方法的FRP增强混凝土梁失稳前断裂过程分析

刘决丁, 范向前, 叶宇霄, 葛菲

刘决丁, 范向前, 叶宇霄, 葛菲. 基于解析方法的FRP增强混凝土梁失稳前断裂过程分析[J]. 工程力学, 2023, 40(10): 129-140. DOI: 10.6052/j.issn.1000-4750.2022.01.0081
引用本文: 刘决丁, 范向前, 叶宇霄, 葛菲. 基于解析方法的FRP增强混凝土梁失稳前断裂过程分析[J]. 工程力学, 2023, 40(10): 129-140. DOI: 10.6052/j.issn.1000-4750.2022.01.0081
LIU Jue-ding, FAN Xiang-qian, YE Yu-xiao, GE Fei. FRACTURE PROCESS ANALYSIS OF FRP REINFORCED CONCRETE BEAMS BEFORE INSTABILITY BASED ON ANALYTICAL METHOD[J]. Engineering Mechanics, 2023, 40(10): 129-140. DOI: 10.6052/j.issn.1000-4750.2022.01.0081
Citation: LIU Jue-ding, FAN Xiang-qian, YE Yu-xiao, GE Fei. FRACTURE PROCESS ANALYSIS OF FRP REINFORCED CONCRETE BEAMS BEFORE INSTABILITY BASED ON ANALYTICAL METHOD[J]. Engineering Mechanics, 2023, 40(10): 129-140. DOI: 10.6052/j.issn.1000-4750.2022.01.0081

基于解析方法的FRP增强混凝土梁失稳前断裂过程分析

基金项目: 国家自然科学基金项目(52171270,51879168);黄河水科学研究联合基金项目(U2243223)
详细信息
    作者简介:

    刘决丁(1994−),男,安徽桐城人,博士生,主要从事混凝土断裂力学研究(E-mail: liujd2020@163.com)

    叶宇霄(1992−),男,江西九江人,博士生,主要从事混凝土断裂力学研究(E-mail: yeyuxiao1992@163.com)

    葛 菲(1999−),女,江苏南通人,硕士生,主要从事混凝土断裂力学研究(E-mail: gfe991123@163.com)

    通讯作者:

    范向前(1982−),男,河南登封人,正高工,博士,硕导,主要从事水工混凝土开裂与控制研究(E-mail: xqfan@nhri.cn)

  • 中图分类号: TU528

FRACTURE PROCESS ANALYSIS OF FRP REINFORCED CONCRETE BEAMS BEFORE INSTABILITY BASED ON ANALYTICAL METHOD

  • 摘要: 为研究FRP增强混凝土梁失稳前断裂过程,该文基于混凝土断裂力学理论和非线性FRP-混凝土界面粘结滑移规律,建立了一个跨中裂缝导致界面脱粘的粘聚区模型,采用解析方法推导了FRP增强混凝土梁界面剪切应力、FRP拉应力以及失稳前断裂韧度的公式,为分析FRP-混凝土界面脱粘提供了一种有效的方法,并开展了动态荷载下4种不同初始缝高比(0.2、0.3、0.4和0.5)的FRP增强混凝土梁三点弯曲试验。结果表明,FRP增强混凝土梁的起裂荷载和阻裂荷载随着初始缝高比的增大而逐渐减小,但初始缝高比为0.4时,试件起裂最晚;起裂韧度和阻裂韧度不随初始缝高比的变化而变化,表现出与其他文献类似的规律,验证了断裂韧度解析解的正确性。
    Abstract: To study the fracture process of FRP reinforced concrete beam before instability, a cohesive zone model for interfacial debonding due to mid-span crack was established based on the theory of concrete fracture mechanics and the bond-slip law of non-linear FRP-concrete interface. The formulas of interfacial shear stress, FRP tensile stress and fracture toughness before instability of FRP reinforced concrete beams were deduced by analytical method, providing an effective method for analyzing FRP-concrete interface debonding. Three-point bending experiments of FRP reinforced concrete beams with four different initial crack-depth ratios (0.2, 0.3, 0.4 and 0.5) under dynamic load were carried out. The experimental results show that, the crack initiation load and crack resistance load of FRP reinforced concrete beams decrease with the increase of initial crack-depth ratio. When the initial crack-depth ratio is 0.4, the crack initiation of specimens is the latest. The crack initiation toughness and the crack resistance toughness do not change with the change of the initial crack-depth ratio, which is consistent with the observations of other references and verifies the correctness of the analytical solution for fracture toughness.
  • 图  1   FRP增强混凝土梁模型示意图

    Figure  1.   Schematic diagram of FRP reinforced concrete beam model

    图  2   FRP增强混凝土梁1/2模型分析图

    Figure  2.   1/2 model analysis diagram of FRP reinforced concrete beam

    图  3   FRP增强混凝土梁界面微单元示意图

    Figure  3.   Schematic diagram of interface micro-unit of FRP reinforced concrete beam

    图  4   双线性粘结滑移模型

    Figure  4.   Bilinear bond slip model

    图  5   FRP-混凝土界面线弹性阶段

    Figure  5.   Linear elastic phase of FRP-concrete interface

    图  6   FRP-混凝土界面弹性-软化阶段

    Figure  6.   Elastic-softening phase of FRP-concrete interface

    图  7   无限长等宽跨中带裂缝模型

    Figure  7.   Crack model for infinite length and equal width

    图  8   试验加载装置

    Figure  8.   Test loading device

    图  9   P-CMOD曲线

    Figure  9.   P-CMOD curves

    图  10   断裂韧度随初始缝高比的变化

    Figure  10.   Variation of fracture toughness with initial crack-depth ratio

    表  1   试验数据表

    Table  1   Experimental data sheet

    试件起裂荷载/kN阻裂荷载/kN起裂荷载/阻裂荷载
    FRP-0.2-12.55016.10450.4177
    FRP-0.2-22.79956.86990.4075
    FRP-0.2-32.50266.35960.3935
    平均值2.61746.44470.4061
    FRP-0.3-11.88724.73190.3988
    FRP-0.3-22.21095.10210.4333
    FRP-0.3-31.81384.91850.3688
    平均值1.97064.91750.4007
    FRP-0.4-11.57233.51470.4473
    FRP-0.4-21.82613.51770.5191
    FRP-0.4-21.65323.52210.4694
    平均值1.68383.51820.4786
    FRP-0.5-11.11032.78070.3993
    FRP-0.5-21.11323.01920.3687
    FRP-0.5-31.04152.80660.3711
    平均值1.08832.86880.3794
    下载: 导出CSV
  • [1]

    LI Q B, GUAN J F, WU Z M, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete [J]. Construction and Building Materials, 2016, 120: 293 − 308. doi: 10.1016/j.conbuildmat.2016.05.111

    [2]

    PREM P R, VERMA M, AMBILY P S. Damage characterization of reinforced concrete beams under different failure modes using acoustic emission [J]. Structures, 2021, 30: 174 − 187. doi: 10.1016/j.istruc.2021.01.007

    [3]

    PEREIRA S, MAGALHES F, GOMES J P, et al. Vibration-based damage detection of a concrete arch dam [J]. Engineering Structures, 2021, 235(4): 112032.

    [4] 王文达, 陈润亭. 方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析[J]. 工程力学, 2021, 38(3): 73 − 85. doi: 10.6052/j.issn.1000-4750.2020.04.0259

    WANG Wenda, CHEN Runting. Analysis on the fire resistance of square concrete-filled steel tubular column to composite beam with outer ring plate connections after earthquake damage [J]. Engineering Mechanics, 2021, 38(3): 73 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0259

    [5]

    XU S L, MU F, WANG J, et al. Experimental study on the interfacial bonding behaviors between sprayed UHTCC and concrete substrate [J]. Construction and Building Materials, 2019, 195: 638 − 649. doi: 10.1016/j.conbuildmat.2018.11.102

    [6]

    BAIRÁN J M , TOI N, ALBERT D. Reliability-based assessment of the partial factor for shear design of fibre reinforced concrete members without shear reinforcement [J]. Materials and Structures, 2021, 54(5): 1 − 16.

    [7] 薛亚东, 刘德军, 黄宏伟, 等. 纤维编织网增强混凝土侧面加固偏压短柱试验研究[J]. 工程力学, 2014, 31(3): 228 − 236. doi: 10.6052/j.issn.1000-4750.2012.11.0826

    XUE Yadong, LIU Dejun, HUANG Hongwen, et al. Experimental study on eccentric compression short columns strengthened by textile-reinforced concrete on side [J]. Engineering Mechanics, 2014, 31(3): 228 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.11.0826

    [8] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207 − 215. doi: 10.6052/j.issn.1000-4750.2017.11.0881

    CAO Liang, ZHANG Haiyan, WU Bo. Shear behavior of RC beams strengthened with textile reinforced geopolymer mortar [J]. Engineering Mechanics, 2019, 36(1): 207 − 215. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0881

    [9] 王东锋, 邵永波, 欧佳灵. CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2021, 38(10): 188 − 199. doi: 10.6052/j.issn.1000-4750.2020.10.0732

    WANG Dongfeng, SHAO Yongbo, OU Jialing. Experimental study on axial compressive capacity of corroded concrete filled circular CFRP-steel tube stubs [J]. Engineering Mechanics, 2021, 38(10): 188 − 199. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0732

    [10]

    BAOLIN W, CHENG J, WU Y F. Effect of defects in externally bonded FRP reinforced concrete [J]. Construction and Building Materials, 2018, 172(7): 63 − 76.

    [11]

    CARLONI C, SUBRAMANIAM K V. Investigation of sub-critical fatigue crack growth in FRP /concrete cohesive interface using digital image analysis [J]. Composites Part B: Engineering, 2013, 51(8): 35 − 43.

    [12]

    YASHCHUK M, SMERDOV D. Reinforced concrete elements strengthened by pre-stressed fibre-reinforced polymer (FRP) [J]. Transportation Research Procedia, 2021, 54: 157 − 165. doi: 10.1016/j.trpro.2021.02.060

    [13]

    SMITH S T, KIM S J. Deflection calculation of FRP-strengthened reinforced concrete flexural members [J]. Australian Journal of Structural Engineering, 2010, 11(2): 75 − 86. doi: 10.1080/13287982.2010.11465057

    [14]

    OOI E T, NATARAJAN S, SONG C, et al. Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon-quadtree meshes [J]. International Journal of Fracture, 2017, 203(1/2): 135 − 137.

    [15]

    OOI E T, SONG C, TIN-LOI F, et al. Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements [J]. Engineering Fracture Mechanics, 2012, 93: 13 − 33.

    [16]

    PHAN D N. A method for calculating cracking moment of FRP reinforced concrete beam [J]. Key Engineering Materials, 2021, 896: 141 − 147. doi: 10.4028/www.scientific.net/KEM.896.141

    [17]

    CHEN X J, DAI M X, YANG Z. Analysis on fatigue failure modes of reinforced concrete beams strengthened with BFRP [J]. Applied Mechanics & Materials, 2015, 744/745/746: 1367 − 1370.

    [18] 陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005(4): 10 − 18. doi: 10.3321/j.issn:1000-6869.2005.04.002

    LU Xinzheng, YE Lieping, TENG Jinguang, et al. Bond-slip model for FRP-to-concrete interface [J]. Journal of Building Structures, 2005(4): 10 − 18. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.04.002

    [19] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(增刊 1): 149 − 153. doi: 10.6052/j.issn.1000-4750.2018.05.S028

    LIU Xiuxi, XU Rongqiao. Interfacial shear stress in FRP-strengthened RC beams [J]. Engineering Mechanics, 2019, 36(Suppl 1): 149 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S028

    [20]

    BAKY H A, EBEAD U A, NEALE K W. Nonlinear micromechanics-based bond–slip model for FRP-concrete interfaces [J]. Engineering Structures, 2003, 25(6): 11 − 23.

    [21]

    WANG C, LIU X, LIU W, et al. Effects of different interface forms on mechanical properties of steel self-compacting concrete composite beams [J]. Advances in Civil Engineering, 2020, 2020(2): 1 − 17.

    [22]

    DAI J G, GAO W Y, TENG J G, et al. Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature [J]. Journal of Composites for Construction, 2013, 17(2): 217 − 228. doi: 10.1061/(ASCE)CC.1943-5614.0000337

    [23] 徐世烺. 混凝土断裂力学 [M]. 北京: 科学出版社, 2011.

    XU Shilang. Fracture mechanics of concrete [M]. Beijing: Science Press, 2011. (in Chinese)

    [24] 李庆斌. 混凝土断裂损伤力学 [M]. 北京: 科学出版社, 2017.

    LI Qingbin. Fracture damage mechanics of concrete [M]. Beijing: Science Press, 2017. (in Chinese)

    [25]

    CARRILLO J, MENDOZA J, ALCOCER S. Model for estimating the flexural performance of concrete reinforced with hooked end steel fibers using three-point bending tests [J]. Structural Concrete, 2021, 22(3): 1 − 18.

    [26]

    LIANG N, DAI J, LIU X, et al. Experimental study on the fracture toughness of concrete reinforced with rnylti-size polypropylene fibres [J]. Magazine of Concrete Research, 2019, 71(9/10): 468 − 475.

    [27]

    WANG J. Cohesive zone model of intermediate crack-induced debonding of FRP-plated concrete beam [J]. International Journal of Solids & Structures, 2006, 43(21): 6630 − 6648.

    [28]

    FAKOOR M, NEMATZADEH M. A new post-peak behavior assessment approach for effect of steel fibers on bond stress-slip relationship of concrete and steel bar after exposure to high temperatures [J]. Construction and Building Materials, 2021, 278(12): 122340.

    [29]

    BISCAIA H C, CHASTRE C, SILVA M. Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces [J]. Composites Part B: Engineering, 2013, 50(1): 210 − 223.

    [30] 易富民. CFRP加固带缝混凝土梁的断裂特性 [D]. 大连: 大连理工大学, 2010.

    Yi Fumin. Fracture characteristics of jointed concrete beams strengthened with CFRP [D]. Dalian: Dalian University of Technology, 2010. (in Chinese)

    [31]

    KOSTIHA V, GIRGLE F, JANUS O, et al. GFRP reinforcement behaviour under multi-axial stress-experimental study [J]. Solid State Phenomena, 2020, 309: 80 − 86. doi: 10.4028/www.scientific.net/SSP.309.80

    [32]

    HAN H, LU Z, ZHANG J Z. Solutions of beam-shaped-function for analysis of composite plates with embedded delaminations [J]. Archive of Applied Mechanics, 2012, 82(4): 573 − 589. doi: 10.1007/s00419-011-0573-5

    [33]

    WANG J, QIAO P. Interface crack between two shear deformable elastic layers [J]. Journal of the Mechanics & Physics of Solids, 2004, 52(4): 891 − 905.

    [34] 范向前, 刘决丁. 不同FRP增强混凝土梁断裂性能试验研究[J]. 建筑材料学报, 2020, 23(5): 1093 − 1097, 1103. doi: 10.3969/j.issn.1007-9629.2020.05.014

    FAN Xiangqian, LIU Jueding. Experimental study on fracture behavior of different kinds of FRP reinforced concrete beams [J]. Journal of Building Materials, 2020, 23(5): 1093 − 1097, 1103. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.05.014

    [35] 胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学, 2019, 36(12): 44 − 51. doi: 10.6052/j.issn.1000-4750.2018.12.0718

    HU Shaowei, YIN Yangyang, FAN Bing, et al. Study of the double-K fracture parameters of concrete based on equivalent pure bending beams [J]. Engineering Mechanics, 2019, 36(12): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0718

    [36]

    NAKAI Y, KIKUCHI S, ASAYAMA K, et al. Stress ratio effect on fatigue crack initiation mechanism of magnesium alloy AZ31 [J]. Materials Science Forum, 2021, 1016: 1003 − 1008. doi: 10.4028/www.scientific.net/MSF.1016.1003

    [37]

    ALIHA M R M, MOUSAVI S S. Sub-sized short bend beam configuration for the study of mixed-mode fracture [J]. Engineering Fracture Mechanics, 2019, 225(23): 1 − 16.

    [38]

    HU X, GUAN J F, WANG Y, et al. Comparison of boundary and size effect models based on new developments [J]. Engineering Fracture Mechanics, 2017, 175: 146 − 167. doi: 10.1016/j.engfracmech.2017.02.005

    [39]

    FU J, HAERI H, YAVARI M D, et al. Effects of the measured noise on the failure mechanism of pre-cracked concrete specimens under the loading modes I, II, III, and IV [J]. Strength of Materials, 2022, 53(6): 938 − 949.

    [40]

    ZHANG X F, XU S L. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis [J]. Engineering Fracture Mechanics, 2011, 78(10): 2115 − 2138. doi: 10.1016/j.engfracmech.2011.03.014

  • 期刊类型引用(1)

    1. 张亚芳,杨学潮,欧成贵,马兴敏,孔伟. 基于非均匀性的平台巴西圆盘失效过程及损伤行为. 深圳大学学报(理工版). 2024(06): 730-738 . 百度学术

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  85
  • PDF下载量:  62
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-01-16
  • 修回日期:  2022-05-15
  • 录用日期:  2022-06-23
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2023-10-09

目录

    GE Fei, gfe991123@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回