FRACTURE PROCESS ANALYSIS OF FRP REINFORCED CONCRETE BEAMS BEFORE INSTABILITY BASED ON ANALYTICAL METHOD
-
摘要: 为研究FRP增强混凝土梁失稳前断裂过程,该文基于混凝土断裂力学理论和非线性FRP-混凝土界面粘结滑移规律,建立了一个跨中裂缝导致界面脱粘的粘聚区模型,采用解析方法推导了FRP增强混凝土梁界面剪切应力、FRP拉应力以及失稳前断裂韧度的公式,为分析FRP-混凝土界面脱粘提供了一种有效的方法,并开展了动态荷载下4种不同初始缝高比(0.2、0.3、0.4和0.5)的FRP增强混凝土梁三点弯曲试验。结果表明,FRP增强混凝土梁的起裂荷载和阻裂荷载随着初始缝高比的增大而逐渐减小,但初始缝高比为0.4时,试件起裂最晚;起裂韧度和阻裂韧度不随初始缝高比的变化而变化,表现出与其他文献类似的规律,验证了断裂韧度解析解的正确性。Abstract: To study the fracture process of FRP reinforced concrete beam before instability, a cohesive zone model for interfacial debonding due to mid-span crack was established based on the theory of concrete fracture mechanics and the bond-slip law of non-linear FRP-concrete interface. The formulas of interfacial shear stress, FRP tensile stress and fracture toughness before instability of FRP reinforced concrete beams were deduced by analytical method, providing an effective method for analyzing FRP-concrete interface debonding. Three-point bending experiments of FRP reinforced concrete beams with four different initial crack-depth ratios (0.2, 0.3, 0.4 and 0.5) under dynamic load were carried out. The experimental results show that, the crack initiation load and crack resistance load of FRP reinforced concrete beams decrease with the increase of initial crack-depth ratio. When the initial crack-depth ratio is 0.4, the crack initiation of specimens is the latest. The crack initiation toughness and the crack resistance toughness do not change with the change of the initial crack-depth ratio, which is consistent with the observations of other references and verifies the correctness of the analytical solution for fracture toughness.
-
表 1 试验数据表
Table 1 Experimental data sheet
试件 起裂荷载/kN 阻裂荷载/kN 起裂荷载/阻裂荷载 FRP-0.2-1 2.5501 6.1045 0.4177 FRP-0.2-2 2.7995 6.8699 0.4075 FRP-0.2-3 2.5026 6.3596 0.3935 平均值 2.6174 6.4447 0.4061 FRP-0.3-1 1.8872 4.7319 0.3988 FRP-0.3-2 2.2109 5.1021 0.4333 FRP-0.3-3 1.8138 4.9185 0.3688 平均值 1.9706 4.9175 0.4007 FRP-0.4-1 1.5723 3.5147 0.4473 FRP-0.4-2 1.8261 3.5177 0.5191 FRP-0.4-2 1.6532 3.5221 0.4694 平均值 1.6838 3.5182 0.4786 FRP-0.5-1 1.1103 2.7807 0.3993 FRP-0.5-2 1.1132 3.0192 0.3687 FRP-0.5-3 1.0415 2.8066 0.3711 平均值 1.0883 2.8688 0.3794 -
[1] LI Q B, GUAN J F, WU Z M, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete [J]. Construction and Building Materials, 2016, 120: 293 − 308. doi: 10.1016/j.conbuildmat.2016.05.111
[2] PREM P R, VERMA M, AMBILY P S. Damage characterization of reinforced concrete beams under different failure modes using acoustic emission [J]. Structures, 2021, 30: 174 − 187. doi: 10.1016/j.istruc.2021.01.007
[3] PEREIRA S, MAGALHES F, GOMES J P, et al. Vibration-based damage detection of a concrete arch dam [J]. Engineering Structures, 2021, 235(4): 112032.
[4] 王文达, 陈润亭. 方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析[J]. 工程力学, 2021, 38(3): 73 − 85. doi: 10.6052/j.issn.1000-4750.2020.04.0259 WANG Wenda, CHEN Runting. Analysis on the fire resistance of square concrete-filled steel tubular column to composite beam with outer ring plate connections after earthquake damage [J]. Engineering Mechanics, 2021, 38(3): 73 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0259
[5] XU S L, MU F, WANG J, et al. Experimental study on the interfacial bonding behaviors between sprayed UHTCC and concrete substrate [J]. Construction and Building Materials, 2019, 195: 638 − 649. doi: 10.1016/j.conbuildmat.2018.11.102
[6] BAIRÁN J M , TOI N, ALBERT D. Reliability-based assessment of the partial factor for shear design of fibre reinforced concrete members without shear reinforcement [J]. Materials and Structures, 2021, 54(5): 1 − 16.
[7] 薛亚东, 刘德军, 黄宏伟, 等. 纤维编织网增强混凝土侧面加固偏压短柱试验研究[J]. 工程力学, 2014, 31(3): 228 − 236. doi: 10.6052/j.issn.1000-4750.2012.11.0826 XUE Yadong, LIU Dejun, HUANG Hongwen, et al. Experimental study on eccentric compression short columns strengthened by textile-reinforced concrete on side [J]. Engineering Mechanics, 2014, 31(3): 228 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.11.0826
[8] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207 − 215. doi: 10.6052/j.issn.1000-4750.2017.11.0881 CAO Liang, ZHANG Haiyan, WU Bo. Shear behavior of RC beams strengthened with textile reinforced geopolymer mortar [J]. Engineering Mechanics, 2019, 36(1): 207 − 215. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0881
[9] 王东锋, 邵永波, 欧佳灵. CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2021, 38(10): 188 − 199. doi: 10.6052/j.issn.1000-4750.2020.10.0732 WANG Dongfeng, SHAO Yongbo, OU Jialing. Experimental study on axial compressive capacity of corroded concrete filled circular CFRP-steel tube stubs [J]. Engineering Mechanics, 2021, 38(10): 188 − 199. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0732
[10] BAOLIN W, CHENG J, WU Y F. Effect of defects in externally bonded FRP reinforced concrete [J]. Construction and Building Materials, 2018, 172(7): 63 − 76.
[11] CARLONI C, SUBRAMANIAM K V. Investigation of sub-critical fatigue crack growth in FRP /concrete cohesive interface using digital image analysis [J]. Composites Part B: Engineering, 2013, 51(8): 35 − 43.
[12] YASHCHUK M, SMERDOV D. Reinforced concrete elements strengthened by pre-stressed fibre-reinforced polymer (FRP) [J]. Transportation Research Procedia, 2021, 54: 157 − 165. doi: 10.1016/j.trpro.2021.02.060
[13] SMITH S T, KIM S J. Deflection calculation of FRP-strengthened reinforced concrete flexural members [J]. Australian Journal of Structural Engineering, 2010, 11(2): 75 − 86. doi: 10.1080/13287982.2010.11465057
[14] OOI E T, NATARAJAN S, SONG C, et al. Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon-quadtree meshes [J]. International Journal of Fracture, 2017, 203(1/2): 135 − 137.
[15] OOI E T, SONG C, TIN-LOI F, et al. Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements [J]. Engineering Fracture Mechanics, 2012, 93: 13 − 33.
[16] PHAN D N. A method for calculating cracking moment of FRP reinforced concrete beam [J]. Key Engineering Materials, 2021, 896: 141 − 147. doi: 10.4028/www.scientific.net/KEM.896.141
[17] CHEN X J, DAI M X, YANG Z. Analysis on fatigue failure modes of reinforced concrete beams strengthened with BFRP [J]. Applied Mechanics & Materials, 2015, 744/745/746: 1367 − 1370.
[18] 陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005(4): 10 − 18. doi: 10.3321/j.issn:1000-6869.2005.04.002 LU Xinzheng, YE Lieping, TENG Jinguang, et al. Bond-slip model for FRP-to-concrete interface [J]. Journal of Building Structures, 2005(4): 10 − 18. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.04.002
[19] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(增刊 1): 149 − 153. doi: 10.6052/j.issn.1000-4750.2018.05.S028 LIU Xiuxi, XU Rongqiao. Interfacial shear stress in FRP-strengthened RC beams [J]. Engineering Mechanics, 2019, 36(Suppl 1): 149 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S028
[20] BAKY H A, EBEAD U A, NEALE K W. Nonlinear micromechanics-based bond–slip model for FRP-concrete interfaces [J]. Engineering Structures, 2003, 25(6): 11 − 23.
[21] WANG C, LIU X, LIU W, et al. Effects of different interface forms on mechanical properties of steel self-compacting concrete composite beams [J]. Advances in Civil Engineering, 2020, 2020(2): 1 − 17.
[22] DAI J G, GAO W Y, TENG J G, et al. Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature [J]. Journal of Composites for Construction, 2013, 17(2): 217 − 228. doi: 10.1061/(ASCE)CC.1943-5614.0000337
[23] 徐世烺. 混凝土断裂力学 [M]. 北京: 科学出版社, 2011. XU Shilang. Fracture mechanics of concrete [M]. Beijing: Science Press, 2011. (in Chinese)
[24] 李庆斌. 混凝土断裂损伤力学 [M]. 北京: 科学出版社, 2017. LI Qingbin. Fracture damage mechanics of concrete [M]. Beijing: Science Press, 2017. (in Chinese)
[25] CARRILLO J, MENDOZA J, ALCOCER S. Model for estimating the flexural performance of concrete reinforced with hooked end steel fibers using three-point bending tests [J]. Structural Concrete, 2021, 22(3): 1 − 18.
[26] LIANG N, DAI J, LIU X, et al. Experimental study on the fracture toughness of concrete reinforced with rnylti-size polypropylene fibres [J]. Magazine of Concrete Research, 2019, 71(9/10): 468 − 475.
[27] WANG J. Cohesive zone model of intermediate crack-induced debonding of FRP-plated concrete beam [J]. International Journal of Solids & Structures, 2006, 43(21): 6630 − 6648.
[28] FAKOOR M, NEMATZADEH M. A new post-peak behavior assessment approach for effect of steel fibers on bond stress-slip relationship of concrete and steel bar after exposure to high temperatures [J]. Construction and Building Materials, 2021, 278(12): 122340.
[29] BISCAIA H C, CHASTRE C, SILVA M. Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces [J]. Composites Part B: Engineering, 2013, 50(1): 210 − 223.
[30] 易富民. CFRP加固带缝混凝土梁的断裂特性 [D]. 大连: 大连理工大学, 2010. Yi Fumin. Fracture characteristics of jointed concrete beams strengthened with CFRP [D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
[31] KOSTIHA V, GIRGLE F, JANUS O, et al. GFRP reinforcement behaviour under multi-axial stress-experimental study [J]. Solid State Phenomena, 2020, 309: 80 − 86. doi: 10.4028/www.scientific.net/SSP.309.80
[32] HAN H, LU Z, ZHANG J Z. Solutions of beam-shaped-function for analysis of composite plates with embedded delaminations [J]. Archive of Applied Mechanics, 2012, 82(4): 573 − 589. doi: 10.1007/s00419-011-0573-5
[33] WANG J, QIAO P. Interface crack between two shear deformable elastic layers [J]. Journal of the Mechanics & Physics of Solids, 2004, 52(4): 891 − 905.
[34] 范向前, 刘决丁. 不同FRP增强混凝土梁断裂性能试验研究[J]. 建筑材料学报, 2020, 23(5): 1093 − 1097, 1103. doi: 10.3969/j.issn.1007-9629.2020.05.014 FAN Xiangqian, LIU Jueding. Experimental study on fracture behavior of different kinds of FRP reinforced concrete beams [J]. Journal of Building Materials, 2020, 23(5): 1093 − 1097, 1103. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.05.014
[35] 胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学, 2019, 36(12): 44 − 51. doi: 10.6052/j.issn.1000-4750.2018.12.0718 HU Shaowei, YIN Yangyang, FAN Bing, et al. Study of the double-K fracture parameters of concrete based on equivalent pure bending beams [J]. Engineering Mechanics, 2019, 36(12): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0718
[36] NAKAI Y, KIKUCHI S, ASAYAMA K, et al. Stress ratio effect on fatigue crack initiation mechanism of magnesium alloy AZ31 [J]. Materials Science Forum, 2021, 1016: 1003 − 1008. doi: 10.4028/www.scientific.net/MSF.1016.1003
[37] ALIHA M R M, MOUSAVI S S. Sub-sized short bend beam configuration for the study of mixed-mode fracture [J]. Engineering Fracture Mechanics, 2019, 225(23): 1 − 16.
[38] HU X, GUAN J F, WANG Y, et al. Comparison of boundary and size effect models based on new developments [J]. Engineering Fracture Mechanics, 2017, 175: 146 − 167. doi: 10.1016/j.engfracmech.2017.02.005
[39] FU J, HAERI H, YAVARI M D, et al. Effects of the measured noise on the failure mechanism of pre-cracked concrete specimens under the loading modes I, II, III, and IV [J]. Strength of Materials, 2022, 53(6): 938 − 949.
[40] ZHANG X F, XU S L. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis [J]. Engineering Fracture Mechanics, 2011, 78(10): 2115 − 2138. doi: 10.1016/j.engfracmech.2011.03.014
-
期刊类型引用(1)
1. 张亚芳,杨学潮,欧成贵,马兴敏,孔伟. 基于非均匀性的平台巴西圆盘失效过程及损伤行为. 深圳大学学报(理工版). 2024(06): 730-738 . 百度学术
其他类型引用(1)