新型装配式自复位RC剪力墙设计与性能研究

肖水晶, 冯鹏

肖水晶, 冯鹏. 新型装配式自复位RC剪力墙设计与性能研究[J]. 工程力学, 2024, 41(11): 116-124. DOI: 10.6052/j.issn.1000-4750.2022.09.0805
引用本文: 肖水晶, 冯鹏. 新型装配式自复位RC剪力墙设计与性能研究[J]. 工程力学, 2024, 41(11): 116-124. DOI: 10.6052/j.issn.1000-4750.2022.09.0805
XIAO Shui-jing, FENG Peng. DESIGN AND PERFORMANCE INVESTIGATION ON NOVEL PREFABRICATED SELF-CENTERING RC SHEAR WALL[J]. Engineering Mechanics, 2024, 41(11): 116-124. DOI: 10.6052/j.issn.1000-4750.2022.09.0805
Citation: XIAO Shui-jing, FENG Peng. DESIGN AND PERFORMANCE INVESTIGATION ON NOVEL PREFABRICATED SELF-CENTERING RC SHEAR WALL[J]. Engineering Mechanics, 2024, 41(11): 116-124. DOI: 10.6052/j.issn.1000-4750.2022.09.0805

新型装配式自复位RC剪力墙设计与性能研究

基金项目: 国家自然科学基金项目(52208263);中国博士后科学基金项目(2022M711867)
详细信息
    作者简介:

    肖水晶(1991−),女,江西吉安人,博士,主要从事结构抗震研究 (E-mail: sjxiao@bjtu.edu.cn)

    通讯作者:

    冯 鹏(1977−),男,陕西耀县人,教授,博士,博导,主要从事结构工程研究 (E-mail: fengpeng@tsinghua.edu.cn)

  • 中图分类号: TU375

DESIGN AND PERFORMANCE INVESTIGATION ON NOVEL PREFABRICATED SELF-CENTERING RC SHEAR WALL

  • 摘要:

    为满足结构施工效率高、震后功能可恢复的多重目标,提出了一种新型装配式自复位RC剪力墙。该新型剪力墙主要包含RC墙板、碟簧复位装置和摩擦耗能装置,三者仅通过高强螺栓组装而成,施工方便且效率高;在地震作用下,主要由碟簧复位装置和摩擦耗能装置提供抵抗弯矩和恢复力,能减小整体剪力墙构件的震后残余变形和损伤,有效提高其震后功能可恢复性。该文分析了新型装配式自复位RC剪力墙的截面受力形式,提出了其截面承载力计算公式;设计了一新型装配式自复位RC剪力墙构件进行数值模拟,获得了其滞回性能,对比分析了其与普通剪力墙的承载力、耗能能力、自复位性能。结果表明:在相同位移角下,新型装配式自复位RC剪力墙的承载力小于普通剪力墙,但其极限承载力与普通剪力墙的峰值承载力相当,且其在超大震(2.0%位移角)下的残余位移角仅为0.31%,具有优异的自复位能力,能使结构在震后具有低损伤、功能可恢复的特点。增大碟簧复位装置的预压力,可有效提高新型剪力墙构件的承载力和累积耗能,但残余变形也相应增大。

    Abstract:

    A novel prefabricated self-centering reinforced concrete (RC) shear wall, which is mainly composed of RC wall slab, self-centering device with disc springs and friction energy dissipation device, is proposed to meet multiple objectives of high construction efficiency and recoverable function after an earthquake. The three main parts of the novel RC shear wall are assembled through high-strength bolts with convenient and efficient construction. When the wall is subjected to seismic loads, the resisting moment and restoring force is mainly provided by the self-centering devices with disc springs and friction energy dissipation devices, thereby the damage and residual deformation of the component can be reduced and its seismic resilience can be effectively improved. In this paper, the sectional forces of the novel prefabricated self-centering RC shear wall are analyzed and its calculation method of the section bearing capacity is proposed. In addition, a novel RC shear wall is designed and its hysteretic behavior is obtained according to the numerical model. Then the bearing capacity, energy dissipation and self-centering capabilities are compared between the novel RC shear wall and the conventional RC shear wall. The results indicate that the bearing capacity of the novel RC shear wall is less than that of the conventional RC shear wall at the same drift ratios, whereas its ultimate bearing capacity is equal to the peak bearing capacity of the conventional RC shear wall. Additionally, the residual drift ratio of the novel RC shear wall is just 0.31% under strong earthquake (corresponding to 2.0% drift ratio), indicating that the self-centering capability of the novel RC shear wall is satisfactory, so that the structure has the abilities of low damage and seismic resilience. Increase in the pre-loading of the self-centering device with disc springs can greatly improve the bearing capacity and energy dissipation capability of the novel RC shear wall, while its residual displacement is correspondingly increased.

  • 图  1   装配式自复位RC剪力墙构造

    Figure  1.   Configuration of the prefabricated self-centering RC shear wall

    图  2   碟簧复位装置构造

    Figure  2.   Configuration of the self-centering device with disc springs

    图  3   摩擦耗能装置构造

    Figure  3.   Configuration of the friction energy dissipation device

    图  4   新型装配式自复位RC剪力墙变形示意图

    Figure  4.   Deformation diagram of the novel prefabricated self-centering RC shear wall

    图  5   新型装配式自复位RC剪力墙的理论力-位移关系

    Figure  5.   Theoretical force-displacement relationship of the novel prefabricated self-centering RC shear wall

    图  6   新型装配式自复位RC剪力墙截面受力示意图

    Figure  6.   Sectional forces diagram of the novel prefabricated self-centering RC shear wall

    图  7   新型装配式自复位RC剪力墙参数设计流程

    Figure  7.   Parameter design process of the novel prefabricated self-centering RC shear wall

    图  8   新型装配式自复位RC剪力墙数值模型

    Figure  8.   Numerical model of the novel prefabricated self-centering RC shear wall

    图  9   新型装配式自复位RC剪力墙滞回曲线

    Figure  9.   Hysteretic curve of the novel prefabricated self-centering RC shear wall

    图  10   滞回曲线对比

    Figure  10.   Comparisons of hysteretic curves

    图  11   骨架曲线对比

    Figure  11.   Comparisons of backbone curves

    图  12   累积耗能对比

    Figure  12.   Comparisons of accumulative energy dissipation

    图  13   残余变形对比

    Figure  13.   Comparisons of residual deformations

  • [1]

    YUAN Z M, SUN C S, WANG Y W. Design for Manufacture and Assembly-oriented parametric design of prefabricated buildings [J]. Automation in Construction, 2018, 88: 13 − 22. doi: 10.1016/j.autcon.2017.12.021

    [2] 王心宇, 杨参天, 李爱群, 等. 预制剪力墙震损修复抗震性能试验研究[J]. 工程力学, 2024, 41(10): 24 − 32. doi: 10.6052/j.issn.1000-4750.2022.08.0681

    WANG Xinyu, YANG Cantian, LI Aiqun, et al. Experimental investigation of seismic performance of precast shear wall repaired after earthquake damage [J]. Engineering Mechanics, 2024, 41(10): 24 − 32. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.08.0681

    [3]

    JIA L G, LI Q R, ZHANG Y G, et al. Experimental study of the hysteretic behavior of prefabricated frame-shear wall structures with grouting sleeve connections [J]. Journal of Building Engineering, 2022, 57: 104704. doi: 10.1016/j.jobe.2022.104704

    [4] 李然, 田春雨, 马云飞. 竖向接缝钢锚环灌浆连接装配式多层剪力墙抗震性能试验研究[J]. 建筑结构学报, 2020, 41(增刊 2): 123 − 132. doi: 10.14006/j.jzjgxb.2020.S2.0015

    LI Ran, TIAN Chunyu, MA Yunfei. Experimental study on seismic performance of precast low-rise concrete shear wall with steel anchor-ring connection [J]. Journal of Building Structures, 2020, 41(Suppl 2): 123 − 132. (in Chinese) doi: 10.14006/j.jzjgxb.2020.S2.0015

    [5] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: From earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    [6]

    VETR M G, SHIRALI N M, GHAMARI A. Seismic resistance of hybrid shear wall (HSW) systems [J]. Journal of Constructional Steel Research, 2016, 116: 247 − 270. doi: 10.1016/j.jcsr.2015.09.011

    [7] 鲁亮, 叶雨立, 夏婉秋, 等. 体外预应力自复位钢筋混凝土框架抗震性能振动台试验研究[J]. 土木工程学报, 2020, 53(增刊 2): 68 − 73, 108. doi: 10.15951/j.tmgcxb.2020.s2.011

    LU Liang, YE Yuli, XIA Wanqiu, et al. Study on the seismic performance of a 3D external prestressed self-centering reinforced concrete frame by shaking table test [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 68 − 73, 108. (in Chinese) doi: 10.15951/j.tmgcxb.2020.s2.011

    [8]

    LU X L, JIANG C, YANG B Y, et al. Seismic design methodology for self-centering reinforced concrete frames [J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 358 − 374. doi: 10.1016/j.soildyn.2018.07.002

    [9]

    LU X L, DANG X L, QIAN J, et al. Experimental study of self-centering shear walls with horizontal bottom slits [J]. Journal of Structural Engineering, 2017, 143(3): 04016183. doi: 10.1061/(ASCE)ST.1943-541X.0001673

    [10]

    MI P, TAN P, LI Y M, et al. Seismic behavior of unbonded post-tension wall with replaceable energy dissipator [J]. Soil Dynamics and Earthquake Engineering, 2023, 166: 107737. doi: 10.1016/j.soildyn.2022.107737

    [11]

    GHASSEMIEH M, BAHAARI M R, GHODRATIAN S M, et al. Improvement of concrete shear wall structures by smart materials [J]. Open Journal of Civil Engineering, 2012, 2(3): 87 − 95. doi: 10.4236/ojce.2012.23014

    [12]

    WANG W, FANG C, LIU J. Self-Centering beam-to-column connections with combined superelastic SMA bolts and steel angles [J]. Journal of Structural Engineering, 2017, 143(2): 04016175. doi: 10.1061/(ASCE)ST.1943-541X.0001675

    [13]

    SONG G, MA N, LI H N. Applications of shape memory alloys in civil structures [J]. Engineering Structures, 2006, 28(9): 1266 − 1274. doi: 10.1016/j.engstruct.2005.12.010

    [14]

    HOULT R D, DE ALMEIDA J P. Residual displacements of reinforced concrete walls detailed with conventional steel and shape memory alloy rebars [J]. Engineering Structures, 2022, 256: 114002. doi: 10.1016/j.engstruct.2022.114002

    [15]

    XU L H, XIAO S J, LI Z X. Experimental investigation on the seismic behavior of a new self-centering shear wall with additional friction [J]. Journal of Structural Engineering, 2021, 147(5): 04021056. doi: 10.1061/(ASCE)ST.1943-541X.0003024

    [16]

    XIAO S J, XU L H, LI Z X. Design and experimental verification of disc spring devices in self-centering reinforced concrete shear walls [J]. Structural Control and Health Monitoring, 2020, 27(7): e2549.

    [17]

    HU S L, WANG W, ALAM M S. Hybrid self-centering rocking core system with fiction spring and viscous dampers for seismic resilience [J]. Engineering Structures, 2022, 257: 114102. doi: 10.1016/j.engstruct.2022.114102

    [18] 徐龙河, 肖水晶. 内置碟簧自复位混凝土剪力墙基于性能的截面设计方法[J]. 工程力学, 2020, 37(4): 70 − 77, 86. doi: 10.6052/j.issn.1000-4750.2019.03.0119

    XU Longhe, XIAO Shuijing. A performance-based section design method of a self-centering concrete shear wall with disc spring devices [J]. Engineering Mechanics, 2020, 37(4): 70 − 77, 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0119

    [19] 金双双, 李盈开, 周建庭, 等. 全装配式自复位防屈曲支撑滞回模型及其性能试验研究[J]. 工程力学, 2022, 39(7): 49 − 57. doi: 10.6052/j.issn.1000-4750.2021.03.0218

    JIN Shuangshuang, LI Yingkai, ZHOU Jianting, et al. Hysteresis model and experimental investigation of assembled self-centering buckling-restrained braces [J]. Engineering Mechanics, 2022, 39(7): 49 − 57. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0218

    [20] 陈曦, 徐龙河, 肖水晶. 碟簧装置恢复力模型及其在自复位RC剪力墙中的应用[J]. 工程力学, 2021, 38(9): 100 − 109. doi: 10.6052/j.issn.1000-4750.2020.08.0607

    CHEN Xi, XU Longhe, XIAO Shuijing. Restoring force model of disc spring devices and its application in self-centering RC shear wall [J]. Engineering Mechanics, 2021, 38(9): 100 − 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0607

    [21]

    RESTREPO J I, RAHMAN A. Seismic performance of self-centering structural walls incorporating energy dissipators [J]. Journal of Structural Engineering, 2007, 133(11): 1560 − 1570. doi: 10.1061/(ASCE)0733-9445(2007)133:11(1560)

    [22]

    WANG B, ZHU S Y, ZHAO J X, et al. Earthquake resilient RC walls using shape memory alloy bars and replaceable energy dissipating devices [J]. Smart Materials and Structures, 2019, 28(6): 065021. doi: 10.1088/1361-665X/ab1974

    [23]

    XU L H, XIAO S J, LI Z X. Hysteretic behavior and parametric studies of a self-centering RC wall with disc spring devices [J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 476 − 488. doi: 10.1016/j.soildyn.2018.09.017

    [24] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)

    [25] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)

    [26]

    LU X Z, XIE L L, GUAN H, et al. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees [J]. Finite Elements in Analysis and Design, 2015, 98: 14 − 25. doi: 10.1016/j.finel.2015.01.006

  • 期刊类型引用(15)

    1. 贺鹏,黄选明,滕东宇,黄广华,郝祯,孙嘉伟. 大城砖-传统灰浆砌体力学特性及破坏机理试验研究. 建筑科学. 2025(01): 9-19 . 百度学术
    2. 马少春,李泽云,苗长伟,鲍鹏,孔令鹏,王梦. 不同损伤程度下历史建筑青砖抗盐侵蚀性能评价. 河南大学学报(自然科学版). 2025(02): 236-245 . 百度学术
    3. 汪源,余文,王艳,黄辉,贾彬,王汝恒. 藏式毛石砌体受压力学性能试验与数值模拟研究. 建筑结构. 2024(08): 113-119 . 百度学术
    4. 梁建国,赵一帆,陈大川,徐培军,李振华,王高峰. 注浆加固毛石砌体的受压性能试验研究. 建筑结构. 2023(24): 136-140 . 百度学术
    5. 崔玥,杨娜. 藏式山地古建筑结构特征及抗震性能. 建筑结构学报. 2023(S2): 20-31 . 百度学术
    6. 白凡,杨娜,常鹏,旦增格桑,旦增卓嘎,滕东宇. 基于模糊层次法的藏式砌体劣化风险权重系数试验标定研究. 土木与环境工程学报(中英文). 2022(02): 158-164 . 百度学术
    7. 蒋宇洪,杨娜. 基于RVE单元的石砌体有效模量计算方法. 工程力学. 2022(04): 86-99+256 . 本站查看
    8. 汪源,黄辉,贾彬,王汝恒. 传统藏式毛石砌体受压力学性能试验研究. 建筑结构. 2022(08): 118-123 . 百度学术
    9. 吴芝忠,黄辉,汪源,贾彬,王汝恒. 藏式毛石砌体抗压强度对其弹性模量和峰值应变预测. 科学技术与工程. 2022(25): 11130-11136 . 百度学术
    10. 丛宇,谭森龙,王佳豪. 藏式建筑震害分析及加固方法研究. 山西建筑. 2022(24): 24-28+51 . 百度学术
    11. 刘威,杨娜,白凡,常鹏. 基于环境激励的藏式古城墙动力特性研究. 土木工程学报. 2021(04): 45-56 . 百度学术
    12. 孙宏伟,贾艳艳,王少杰,倪韦斌,殷志凯. 现存干砌毛石墙抗震性能试验与原貌保护策略. 工程抗震与加固改造. 2021(02): 117-124 . 百度学术
    13. 常鹏,吴楠楠,王钊,杨娜,白凡. 藏式山地结构有限元模型修正及动力可靠度分析. 土木工程学报. 2020(06): 13-20+41 . 百度学术
    14. 蒋宇洪,杨娜,白凡. 基于RVE单元的藏式古建石砌体均质化研究. 工程力学. 2020(07): 110-124 . 本站查看
    15. 郑文忠,敖日格乐,王英,黄文宣. 碱矿渣陶粒混凝土砌块砌体受压本构关系. 工程力学. 2020(10): 218-227 . 本站查看

    其他类型引用(10)

图(13)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  48
  • PDF下载量:  83
  • 被引次数: 25
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2023-01-08
  • 录用日期:  2023-02-14
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回