[1] |
Liu H, Yan Y, Fang D. Analysis on honeycomb crack of brake drum[J]. Hot Working Technology, 2013, 42(22):212-214.
|
[2] |
Zhao Y, Ren L Q, Tong X, et al. Frictional wear and thermal fatigue behaviours of biomimetic coupling materials for brake drums[J]. Journal of Bionic Engineering, 2008, 5(9):20-27.
|
[3] |
Gui L, Wang X, Fan Z, et al. A simulation method of thermo-mechanical and tribological coupled analysis in dry sliding systems[J]. Tribology International, 2016, 103:121-131.
|
[4] |
Regheere G, Collignon M, Cristol A-L, et al. Thermocracks®, a specific testing machine for evaluation of the thermal fatigue resistance of materials[J]. Procedia Engineering, 2013, 66(7):250-263.
|
[5] |
Gbadeyan O J, Kanny K. Tribological behaviours of polymer-based hybrid nanocomposite brake pad. Journal of Tribology. 2018, 140(3):032003-1-032003-7.
|
[6] |
Karbalaei Mehdi J, Nejat A, Shariat Panahi M. Heat transfer improvement in automotive brake disks via shape optimization of cooling vanes using improved TPSO algorithm coupled with artificial neutral network[J]. Journal of Thermal Science and Engineering Applications. 2017, 10(1):011013-1-011013-14.
|
[7] |
Peng D, Jones R, Constable T. A study into crack growth in a railway wheel under thermal stop brake loading spectrum[J]. Engineering Failure Analysis, 2012, 25:280-290.
|
[8] |
Topac M M, Ercan S, Kuralay N S. Fatigue life prediction of a heavy vehicle steel wheel under radial loads by using finite element analysis[J]. Engineering Failure Analysis, 2012, 20(3):67-79.
|
[9] |
关鹏涛, 闾川阳, 唐夏焘, 等. Q345R钢多个过载作用下疲劳裂纹扩展行为研究[J]. 工程力学, 2017, 34(7):224-231, 240. Guan Taopeng, Lü Chuanyang, Tang Xiatao, et al. Study on fatigue crack growth behavior of Q345R steel under multiple overloads[J]. Engineering Mechanics, 2017, 34(7):224-231, 240. (in Chinese)
|
[10] |
李慧乐, 夏禾. 基于车桥耦合随机振动分析的钢桥疲劳可靠度评估[J]. 工程力学, 2017, 34(2):69-77. Li Huile, Xia He. Fatigue reliability evaluation of steel bridges based on coupling random vibration analysis of train and bridge[J]. Engineering Mechanics, 2017, 34(2):69-77. (in Chinese)
|
[11] |
Kim D J, Lee Y M, Park J S, et al. Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface[J]. Materials Science & Engineering A, 2008, 483(1):456-459.
|
[12] |
Mackin T J, Noe S C, Ball K J, et al. Thermal cracking in disc brakes[J]. Engineering Failure Analysis, 2002, 9(1):63-76.
|
[13] |
曲杰, 苏海赋. 基于代理模型的通风盘式制动器制动盘结构优化设计[J]. 工程力学, 2013, 30(2):332-339. Qu Jie, Su Haifu. Optimization design on ventilated disc brake based on surrogate model technology[J]. Engineering Mechanics, 2013, 30(2):332-339. (in Chinese)
|
[14] |
Wu S C, Zhang S Q, Xu Z W. Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc[J]. International Journal of Fatigue, 2016, 87:359-369.
|
[15] |
许自涛. 鼓式制动器应力分析与试验测试[D]. 河北:燕山大学, 2011:47-50. Xu Zitao. The stress anaylsis and experimental study of the drum brake[D]. Hebei:Yanshan University, 2011:47-50. (in Chinese)
|
[16] |
姚艳春, 王国权, 杜春英, 等. 重载鼓式制动器动力学特性有限元分析[J]. 北京信息科技大学学报(自然科学版), 2014, 29(1):37-42. Yao Yangchun, Wang Guoquan, Du Chunying, et al. Dynamic FEA analyses of heavy vehicle drum brake system[J]. Journal of Beijing Information Science and Technology University (Natural Science Edition), 2014, 29(1):37-42. (in Chinese)
|
[17] |
张方宇, 桂良进, 范子杰. 销-盘试验的热-应力-磨损耦合模拟研究[J]. 机械工程学报, 2015, 51(8):107-115. Zhang Fangyu, Gui Liangjin, Fan Zijie. Study on simulation of coupled heat transfer, stress and wear behavior in pin-on-disc experiments[J]. Journal of Mechanical Engineering, 2015, 51(8):107-115. (in Chinese)
|
[18] |
Gui L J, Zhang F Y, Fan Z J, et al. The influence of temperature and load on dry sliding wear and friction property of low metallic friction material[J]. Advanced Materials Research, 2014, 887/888:886-894.
|
[19] |
刘惟信. 汽车设计[M]. 北京:清华大学出版社, 2001:696-697. Liu Weixin. Automotive Design[M]. Beijing:Tsinghua University Press, 2001:696-697. (in Chinese)
|