鼓式制动器动态应变和温度特性试验研究与分析

王晓颖, 范子杰, 王青春, 桂良进

王晓颖, 范子杰, 王青春, 桂良进. 鼓式制动器动态应变和温度特性试验研究与分析[J]. 工程力学, 2018, 35(10): 222-228,237. DOI: 10.6052/j.issn.1000-4750.2017.06.0486
引用本文: 王晓颖, 范子杰, 王青春, 桂良进. 鼓式制动器动态应变和温度特性试验研究与分析[J]. 工程力学, 2018, 35(10): 222-228,237. DOI: 10.6052/j.issn.1000-4750.2017.06.0486
WANG Xiao-ying, FAN Zi-jie, WANG Qing-chun, GUI Liang-jin. EXPERIMENTAL INVESTIGATION AND ANALYSIS ON DYNAMIC STRAIN AND TEMPERATURE OF DRUM BRAKE[J]. Engineering Mechanics, 2018, 35(10): 222-228,237. DOI: 10.6052/j.issn.1000-4750.2017.06.0486
Citation: WANG Xiao-ying, FAN Zi-jie, WANG Qing-chun, GUI Liang-jin. EXPERIMENTAL INVESTIGATION AND ANALYSIS ON DYNAMIC STRAIN AND TEMPERATURE OF DRUM BRAKE[J]. Engineering Mechanics, 2018, 35(10): 222-228,237. DOI: 10.6052/j.issn.1000-4750.2017.06.0486

鼓式制动器动态应变和温度特性试验研究与分析

基金项目: 国家自然科学基金项目(51475255)
详细信息
    作者简介:

    王晓颖(1992-),女,河北人,博士生,主要从事制动器的疲劳寿命预测的研究(E-mail:xiaoying14@mails.tsinghua.edu.cn);范子杰(1958-),男,内蒙人,教授,博士,博导,主要从事汽车结构分析与优化设计研究(E-mail:zjfan@mail.tsinghua.edu.cn);王青春(1969-),男,山东人,副教授,博士,主要从事汽车制动器仿真和疲劳建模的研究(E-mail:wangqingchun@bjfu.edu.cn).

    通讯作者:

    桂良进(1971-),男,江西人,副研究员,博士,博导,主要从事汽车结构分析与材料失效研究(E-mail:gui@tsinghua.edu.cn).

  • 中图分类号: U467.51+1

EXPERIMENTAL INVESTIGATION AND ANALYSIS ON DYNAMIC STRAIN AND TEMPERATURE OF DRUM BRAKE

  • 摘要: 鼓式制动器的工作过程存在着强烈的摩擦学-传热学-机械学耦合行为,其动态受载状态研究是分析制动器制动特性、进行疲劳寿命评估和结构优化设计的重要基础。该文以某重型卡车的鼓式制动器动态特性为研究对象,设计试验获得了两种制动工况下制动鼓外表面的动态应变和摩擦表面的温度变化,并采用有限元软件ABAQUS进行了考虑磨损的热机耦合仿真分析。结果表明,制动鼓局部与制动蹄不同位置接触时应变呈现极度不均匀的特征,且相似的一组四个波峰在随制动鼓的旋转重复出现。随着温度升高,热应变对制动鼓的平均应变状态影响显著。
    Abstract: The working process of drum brakes involves strong thermo-mechanical and tribological coupling behaviors. The research on the dynamic strain of a drum brake is of great significance to its performance analysis, structure optimization and fatigue prediction. A new test procedure is proposed to investigate the dynamic behaviors of a working drum. The strain-time properties and temperature-time properties of the friction surface of the drum are studied respectively. Thermo-mechanical and tribological coupling analysis is conducted by using software ABAQUS as well. The results show that the strain is uneven in different deformation status when the drum contact different zones of friction plates, and that a set of four wave crests is repeated. Meanwhile, thermal effect is proved significant to its mean strain status.
  • [1] Liu H, Yan Y, Fang D. Analysis on honeycomb crack of brake drum[J]. Hot Working Technology, 2013, 42(22):212-214.
    [2] Zhao Y, Ren L Q, Tong X, et al. Frictional wear and thermal fatigue behaviours of biomimetic coupling materials for brake drums[J]. Journal of Bionic Engineering, 2008, 5(9):20-27.
    [3] Gui L, Wang X, Fan Z, et al. A simulation method of thermo-mechanical and tribological coupled analysis in dry sliding systems[J]. Tribology International, 2016, 103:121-131.
    [4] Regheere G, Collignon M, Cristol A-L, et al. Thermocracks®, a specific testing machine for evaluation of the thermal fatigue resistance of materials[J]. Procedia Engineering, 2013, 66(7):250-263.
    [5] Gbadeyan O J, Kanny K. Tribological behaviours of polymer-based hybrid nanocomposite brake pad. Journal of Tribology. 2018, 140(3):032003-1-032003-7.
    [6] Karbalaei Mehdi J, Nejat A, Shariat Panahi M. Heat transfer improvement in automotive brake disks via shape optimization of cooling vanes using improved TPSO algorithm coupled with artificial neutral network[J]. Journal of Thermal Science and Engineering Applications. 2017, 10(1):011013-1-011013-14.
    [7] Peng D, Jones R, Constable T. A study into crack growth in a railway wheel under thermal stop brake loading spectrum[J]. Engineering Failure Analysis, 2012, 25:280-290.
    [8] Topac M M, Ercan S, Kuralay N S. Fatigue life prediction of a heavy vehicle steel wheel under radial loads by using finite element analysis[J]. Engineering Failure Analysis, 2012, 20(3):67-79.
    [9] 关鹏涛, 闾川阳, 唐夏焘, 等. Q345R钢多个过载作用下疲劳裂纹扩展行为研究[J]. 工程力学, 2017, 34(7):224-231, 240. Guan Taopeng, Lü Chuanyang, Tang Xiatao, et al. Study on fatigue crack growth behavior of Q345R steel under multiple overloads[J]. Engineering Mechanics, 2017, 34(7):224-231, 240. (in Chinese)
    [10] 李慧乐, 夏禾. 基于车桥耦合随机振动分析的钢桥疲劳可靠度评估[J]. 工程力学, 2017, 34(2):69-77. Li Huile, Xia He. Fatigue reliability evaluation of steel bridges based on coupling random vibration analysis of train and bridge[J]. Engineering Mechanics, 2017, 34(2):69-77. (in Chinese)
    [11] Kim D J, Lee Y M, Park J S, et al. Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface[J]. Materials Science & Engineering A, 2008, 483(1):456-459.
    [12] Mackin T J, Noe S C, Ball K J, et al. Thermal cracking in disc brakes[J]. Engineering Failure Analysis, 2002, 9(1):63-76.
    [13] 曲杰, 苏海赋. 基于代理模型的通风盘式制动器制动盘结构优化设计[J]. 工程力学, 2013, 30(2):332-339. Qu Jie, Su Haifu. Optimization design on ventilated disc brake based on surrogate model technology[J]. Engineering Mechanics, 2013, 30(2):332-339. (in Chinese)
    [14] Wu S C, Zhang S Q, Xu Z W. Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc[J]. International Journal of Fatigue, 2016, 87:359-369.
    [15] 许自涛. 鼓式制动器应力分析与试验测试[D]. 河北:燕山大学, 2011:47-50. Xu Zitao. The stress anaylsis and experimental study of the drum brake[D]. Hebei:Yanshan University, 2011:47-50. (in Chinese)
    [16] 姚艳春, 王国权, 杜春英, 等. 重载鼓式制动器动力学特性有限元分析[J]. 北京信息科技大学学报(自然科学版), 2014, 29(1):37-42. Yao Yangchun, Wang Guoquan, Du Chunying, et al. Dynamic FEA analyses of heavy vehicle drum brake system[J]. Journal of Beijing Information Science and Technology University (Natural Science Edition), 2014, 29(1):37-42. (in Chinese)
    [17] 张方宇, 桂良进, 范子杰. 销-盘试验的热-应力-磨损耦合模拟研究[J]. 机械工程学报, 2015, 51(8):107-115. Zhang Fangyu, Gui Liangjin, Fan Zijie. Study on simulation of coupled heat transfer, stress and wear behavior in pin-on-disc experiments[J]. Journal of Mechanical Engineering, 2015, 51(8):107-115. (in Chinese)
    [18] Gui L J, Zhang F Y, Fan Z J, et al. The influence of temperature and load on dry sliding wear and friction property of low metallic friction material[J]. Advanced Materials Research, 2014, 887/888:886-894.
    [19] 刘惟信. 汽车设计[M]. 北京:清华大学出版社, 2001:696-697. Liu Weixin. Automotive Design[M]. Beijing:Tsinghua University Press, 2001:696-697. (in Chinese)
  • 期刊类型引用(8)

    1. 石康,苏旭武,夏海龙,杨蒙. 极端状态下周盘式制动器热应力耦合特性. 湖北工业大学学报. 2024(01): 23-27 . 百度学术
    2. 程燚,苏旭武,石康,夏海龙. 周盘式制动器热-结构耦合分析及实验研究. 组合机床与自动化加工技术. 2022(04): 162-166+170 . 百度学术
    3. 王晓颖,范子杰,边疆,桂良进. 鼓式制动器疲劳寿命预测. 清华大学学报(自然科学版). 2021(01): 21-27 . 百度学术
    4. 边疆,王晓颖,桂良进,范子杰. 双金属鼓式制动器高温工况的试验与仿真. 汽车安全与节能学报. 2021(02): 173-179 . 百度学术
    5. 孙继宇,张晓东. 鼓式制动器不同工况下热—应力耦合分析. 中国农机化学报. 2020(01): 109-113+119 . 百度学术
    6. 任毅如,马新星,杨玲玲,杨士磊,宁克焱. 干片式制动器加压机构塑性变形有限元模拟. 塑性工程学报. 2020(11): 125-130 . 百度学术
    7. 郑彬,张敬东,殷国富. 鼓式制动器热—结构耦合特性仿真分析. 中国农机化学报. 2019(02): 119-124 . 百度学术
    8. 岳雷,王慧,杜豫川,姚红云. 基于安全性分析的山区公路弯坡组合路段设计指标研究. 工程力学. 2019(11): 158-167 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  572
  • HTML全文浏览量:  72
  • PDF下载量:  80
  • 被引次数: 11
出版历程
  • 收稿日期:  2017-06-20
  • 修回日期:  2018-04-16
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回