考虑桩-土相对刚度的大直径单桩p-y曲线模型

王洋, 竺明星, 戴国亮, 高鲁超, 梁晓飞, 龚维明

王洋, 竺明星, 戴国亮, 高鲁超, 梁晓飞, 龚维明. 考虑桩-土相对刚度的大直径单桩p-y曲线模型[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.11.0877
引用本文: 王洋, 竺明星, 戴国亮, 高鲁超, 梁晓飞, 龚维明. 考虑桩-土相对刚度的大直径单桩p-y曲线模型[J]. 工程力学. DOI: 10.6052/j.issn.1000-4750.2023.11.0877
WANG Yang, ZHU Ming-xing, DAI Guo-liang, GAO Lu-chao, LIANG Xiao-fei, GONG Wei-ming. P-Y CURVE MODELOF LARGE-DIAMETER MONOPILE CONSIDERING PILE-SOIL RELATIVE STIFFNESS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.11.0877
Citation: WANG Yang, ZHU Ming-xing, DAI Guo-liang, GAO Lu-chao, LIANG Xiao-fei, GONG Wei-ming. P-Y CURVE MODELOF LARGE-DIAMETER MONOPILE CONSIDERING PILE-SOIL RELATIVE STIFFNESS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.11.0877

考虑桩-土相对刚度的大直径单桩p-y曲线模型

基金项目: 国家自然科学基金项目(52078128);山东省自然科学基金青年基金项目(ZR2023QE172; ZR2022QD026)
详细信息
    作者简介:

    王 洋(1992−),男,山东人,讲师,博士,硕导,主要从事桥梁深水基础及海上风电基础的研究(E-mail: wangyang@sdut.edu.cn)

    竺明星(1985−),男,江苏人,副教授,博士,硕导,主要从事桩基工程理论的研究(E-mail: mxingzhu@just.edu.cn)

    戴国亮(1977−),男,湖南人,教授,博士,博导,主要从事桩基工程理论的研究(E-mail: daigl@seu.edu.cn)

    高鲁超(1989−),男,山东人,工程师,博士,主要从事风电基础的研究(E-mail: gaolc1202@126.com)

    龚维明(1963−),男,江苏人,教授,博士,博导,主要从事桩基工程理论的研究(E-mail: wmgong@seu.edu.cn)

    通讯作者:

    梁晓飞(1978−),女,吉林人,副教授,博士,主要从事桥梁基础等方面研究(E-mail: liangxiaofei@sdut.edu.cn)

  • 中图分类号: TU473.1

P-Y CURVE MODELOF LARGE-DIAMETER MONOPILE CONSIDERING PILE-SOIL RELATIVE STIFFNESS

  • 摘要:

    相比于传统桩基础,海上风机单桩具有桩径大(D>3)和长细比小(Lm/D<10)的特点,在水平荷载作用下通常表现出半刚性变形特性。桩-土相对刚度的不同导致传统设计方法,如API p-y曲线法,不再适用于海上单桩基础。为研究桩-土相对刚度对p-y曲线的影响,利用有限元软件ABAQUS开展了大直径单桩在水平荷载作用下的三维数值分析。明确了桩周土抗力沿环向和竖向的分布特性;对比分析了桩径D、长细比Lm/D和土体弹性模量Es及其沿埋深分布特性对p-y曲线初始刚度的影响,继而基于等效桩头刚度法获取了考虑桩-土相对刚度的p-y初始刚度模型;对桩周水平土反力分布曲线进行函数拟合,得到了极限土抗力计算模型;采用双曲函数作为骨干曲线,建立了p-y曲线新模型。结果表明:p-y曲线初始刚度与D无关,随着桩-土相对刚度的增大而增大;桩-土相对刚度受土体Es沿埋深不同增长模式影响,分析中需给予考虑;所建立的p-y模型对于不同桩-土体系均具有较好的适用性,可为砂土中海上风机大直径单桩设计提供参考。

    Abstract:

    Compared with traditional pile foundations, offshore monopile foundations are featured by their large pile diameters (D>3) and low aspect ratios (Lm/D<10), and usually exhibit semi-rigid deformation characteristics under lateral loads. The difference in pile-soil relative stiffness leads to the fact that the traditional design methods, such as the p-y curve method of API specification, are not suitable for the current offshore monopile. To investigate the effect of pile-soil relative stiffness on the p-y curve, a three-dimensional numerical analysis of large-diameter monopiles under lateral loads is carried out using the finite element software ABAQUS. The distribution characteristics of the soil reactions around the pile along the circular and vertical directions are clarified. The effects of the pile diameter D, of the pile aspect ratio Lm/D, and of the soil elastic modulus Es on the initial stiffness of the p-y curve are analyzed, and the initial stiffness model of the p-y curve considering the pile-soil relative stiffness is obtained by the equivalent pile head stiffness method. A function is fitted to the distribution of lateral soil reactions around the pile to obtain the calculation model of the ultimate soil resistance. One new p-y curve model for the large-diameter monopile is established by adopting hyperbolic function as the backbone curve. The results show that the initial stiffness of the p-y curve is independent of the pile diameter and increases with the increment of the pile-soil relative stiffness. The relative pile-soil stiffness is affected by different growth patterns of soil Es along the burial depth, which need to be taken into account in the analysis. The p-y model established has good applicability and can provide an important reference for the design of large-diameter monopiles in sand.

  • 图  1   三维数值模型及网格划分

    Figure  1.   3D numerical model and meshing

    图  2   案例1结果对比

    Figure  2.   Comparison of Case 1 results

    图  3   案例2结果对比

    Figure  3.   Comparison of Case 2 results

    图  4   桩周正向力和切向力分布

    Figure  4.   Distribution of normal force and tangential force around the pile

    图  5   不同深度处σr分布

    Figure  5.   Distribution of σr around the pile at different depths

    图  6   不同深度处τr分布

    Figure  6.   Distribution of τr around the pile at different depths

    图  7   桩身左、右幅的规定

    Figure  7.   Specification of the left and right widths of the pile

    图  8   p(z)的分布形式

    Figure  8.   Distribution form of p(z)

    图  9   kiniz的分布形式

    Figure  9.   Distribution form of kini along the depth z

    图  10   KRf(KR)的关系

    Figure  10.   Relationship between KR and f(KR)

    图  11   Es沿z的不同分布形式

    Figure  11.   Different forms of distribution of Es along the z

    图  12   不同αkini沿z的分布形式

    Figure  12.   Forms of kini along z for different α

    图  13   αf(α)的关系

    Figure  13.   Relationship between α and f(α)

    图  14   桩周水平土反力数据拟合

    Figure  14.   Data fitting of horizontal soil reaction around piles

    图  15   有限元与本文方法对比

    Figure  15.   Comparison of finite element and methods in this paper

    图  16   Bhushan试验与本文方法对比

    Figure  16.   Comparison of Bhushan test and methods in this paper

    图  17   PISA试验与本文方法对比

    Figure  17.   Comparison of the PISA test and the method in this paper

    表  1   不同类型土体的参数值[18]

    Table  1   Parameter values for different soil types

    系数 松砂 中密砂 密砂
    κ 0.65 0.60 0.55
    λ 300 400 600
    φ/(°) 32 35 38
    ψ/(°) 2 5 8
    γ'/(kN·m−3) 9.0 9.7 12.0
    下载: 导出CSV

    表  2   弹性模型中桩-土参数配置

    Table  2   Configuration of pile-soil parameters in the elastic model

    影响参数参数值
    桩径D/ m1, 3, 5, 7, 9
    长细比Lm/D4, 6, 8
    土体弹性模量Es/ MPa50, 90, 130
    下载: 导出CSV

    表  3   有限元验证算例

    Table  3   Finite element validation examples

    编号桩径D/m长细比Lm/D加载点高度Le/m土体
    密实度
    α
    3-6-d3618密砂0.55
    5-6- md5630中密砂0.60
    5-6-l5630松砂0.65
    7-6-d7642密砂0.55
    下载: 导出CSV
  • [1] 李万润, 范科友, 杜永峰. 考虑叶片旋转效应的风力发电塔架结构风-震耦合响应分析[J]. 工程力学, 2023, 40(4): 193 − 204, 256. doi: 10.6052/j.issn.1000-4750.2021.10.0817

    LI Wanrun, FAN Keyou, DU Yongfeng. Response analysis of wind turbine structure considering blade rotation effect under wind-earthquake coupling [J]. Engineering Mechanics, 2023, 40(4): 193 − 204, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0817

    [2]

    API RP 2GEO, Geotechnical and foundation design considerations [S]. Washington: API, 2011.

    [3]

    WANG Y, DAI G L, ZHU M X, et al. Numerical study on soil springs stiffnesses of laterally loaded monopiles [J]. Marine Georesources & Geotechnology, 2024, doi: 10.1080/1064119X.2024.2325540.

    [4] 吴敬凯, 沈忠辉, 单楷越, 等. 海上风电单桩-摩擦环复合基础动力响应特性研究[J/OL]. 工程力学. https://doi.org/10.6052/j.issn.1000-4750.2023.03.0154, 2023-07-15.

    WU Jingkai, SHEN Zhonghui, SHAN Kaiyue, et al. Dynamic response characteristics of pile-friction ring foundation for offshore wind turbines [J/OL]. Engineering Mechanics. https://doi.org/10.6052/j.issn.1000-4750.2023.03.0154, 2023-07-15. (in Chinese)

    [5]

    ALVER O, ESELLER-BAYAT E E. A new p-y model for soil-pile interaction analyses in cohesionless soils under monotonic loading [J]. Soils and Foundations, 2024, 64(2): 101441. doi: 10.1016/j.sandf.2024.101441

    [6]

    ZHANG X L, ZHOU R, ZHANG G L, et al. A corrected p-y curve model for large-diameter pile foundation of offshore wind turbine [J]. Ocean Engineering, 2023, 273: 114012. doi: 10.1016/j.oceaneng.2023.114012

    [7] 孙毅龙, 许成顺, 杜修力, 等. 海上风电大直径单桩的修正p-y曲线模型[J]. 工程力学, 2021, 38(4): 44 − 53. doi: 10.6052/j.issn.1000-4750.2020.01.0051

    SUN Yilong, XU Chengshun, DU Xiuli, et al. A modified p-y curve model of large-monopiles of offshore wind power plants [J]. Engineering Mechanics, 2021, 38(4): 44 − 53. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0051

    [8]

    KIM Y, JEONG S, WON J. Effect of lateral rigidity of offshore piles using proposed p-y curves in marine clay [J]. Marine Georesources & Geotechnology, 2009, 27(1): 53 − 77.

    [9]

    FAN C C, LONG J H. Assessment of existing methods for predicting soil response of laterally loaded piles in sand [J]. Computers and Geotechnics, 2005, 32(4): 274 − 289. doi: 10.1016/j.compgeo.2005.02.004

    [10]

    WANG H, BRANSBY M F, LEHANE B M, et al. Numerical investigation of the monotonic drained lateral behaviour of large-diameter rigid piles in medium-dense uniform sand [J]. Géotechnique, 2023, 73(8): 689 − 700.

    [11]

    WAN X, DOHERTY J P, RANDOLPH M F. Relationships between lateral and rotational load transfer stiffnesses and soil modulus for the elastic response of monopiles [J]. Computers and Geotechnics, 2021, 137: 104256. doi: 10.1016/j.compgeo.2021.104256

    [12]

    WANG L Z, LAI Y Q, HONG Y, et al. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios [J]. Ocean Engineering, 2020, 212: 107492. doi: 10.1016/j.oceaneng.2020.107492

    [13]

    ASHFORD S A, JUIRNARONGRIT T. Evaluation of pile diameter effect on initial modulus of subgrade reaction [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 234 − 242. doi: 10.1061/(ASCE)1090-0241(2003)129:3(234)

    [14] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807 − 1815.

    ZHU Bin, XIONG Gen, LIU Jinchao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807 − 1815. (in Chinese)

    [15]

    WANG H, WANG L Z, ASKARINEJAD A, et al. Ultimate soil resistance of the laterally loaded pile in uniform sand [J]. Canadian Geotechnical Journal, 2023, 60(4): 587 − 593. doi: 10.1139/cgj-2021-0487

    [16] 付臣志, 江杰, 欧孝夺, 等. 砂土地基中刚性单桩水平极限承载力改进计算方法[J]. 中南大学学报(自然科学版), 2021, 52(10): 3668 − 3679.

    FU Chenzhi, JIANG Jie, OU Xiaoduo, et al. An improved calculation method of lateral ultimate bearing capacity of rigid pile in sandy soil foundation [J]. Journal of Central South University (Science and Technology), 2021, 52(10): 3668 − 3679. (in Chinese)

    [17] 张小玲, 赵景玖, 杜修力. 基于Vesic圆孔扩张理论的桩周土抗力计算方法研究[J]. 中国公路学报, 2021, 34(6): 19 − 26. doi: 10.3969/j.issn.1001-7372.2021.06.003

    ZHANG Xiaoling, ZHAO Jingjiu, DU Xiuli. Computation method for soil resistance around pile based on cavity expansion theory [J]. China Journal of Highway and Transport, 2021, 34(6): 19 − 26. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.06.003

    [18]

    ACHMUS M, AKDAG C T, THIEKEN K. Load-bearing behavior of suction bucket foundations in sand [J]. Applied Ocean Research, 2013, 43: 157 − 165. doi: 10.1016/j.apor.2013.09.001

    [19]

    KLINKVORT R T, HEDEDAL O. Lateral response of monopile supporting an offshore wind turbine [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(2): 147 − 158. doi: 10.1680/geng.12.00033

    [20]

    CHOO Y W, KIM D. Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: Centrifuge tests [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015058. doi: 10.1061/(ASCE)GT.1943-5606.0001373

    [21]

    PRASAD Y V S N, CHARI T R. Lateral capacity of model rigid piles in cohesionless soils [J]. Soils and Foundations, 1999, 39(2): 21 − 29. doi: 10.3208/sandf.39.2_21

    [22]

    IBSEN L B, ROESEN H R, WOLF T K, et al. Assessment of p-y curves from numerical methods for a non-slender monopile in cohesionless soil [C]// Proceedings of the Twenty-Third International Offshore and Polar Engineering Conference. Anchorage, Department of Civil Engineering, Aalborg University. 2013: ISOPE-I-13-246.

    [23]

    REESE L C, COX W R, KOOP F D. 1974. Analysis of laterally-loaded piles in sand [C]. Proceeding of the 6th Offshore Technology Conference, Houston, Texas, America, 1974: 473 − 485.

    [24]

    O’NEILL M W, MURCHISON J M. An evaluation of p-y relationships in sands [R]. Houston: University of Houston, 1983.

    [25] 竺明星, 王洋, 龚维明, 等. 基于桩-土界面脱开效应及摩阻力增强效应影响的水平荷载作用下桩受力机理研究[J]. 建筑结构学报, 2021, 42(4): 117 − 130, 138.

    ZHU Mingxing, WANG Yang, GONG Weiming, et al. Bearing mechanism of laterally loaded piles under separation effect and friction enhancement effect of pile-soil interface [J]. Journal of Building Structures, 2021, 42(4): 117 − 130, 138. (in Chinese)

    [26]

    POULOS H G, HULL T S. The role of analytical geomechanics in foundation engineering [C]// Foundation Engineering: Current Principles and Practices. Evanston: ASCE, 1989: 1578 − 1606.

    [27]

    AISSA M H, AMAR BOUZID D, BHATTACHARYA S. Monopile head stiffness for serviceability limit state calculations in assessing the natural frequency of offshore wind turbines [J]. International Journal of Geotechnical Engineering, 2018, 12(3): 267 − 283. doi: 10.1080/19386362.2016.1270794

    [28]

    BAGUELIN F, FRANK R, SAÏD Y H. Theoretical study of lateral reaction mechanism of piles [J]. Géotechnique, 1977, 27(3): 405 − 434.

    [29]

    ZHU B, SUN Y X, CHEN R P, et al. Experimental and analytical models of laterally loaded rigid monopiles with hardening p-y curves [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2015, 141(6): 04015007. doi: 10.1061/(ASCE)WW.1943-5460.0000310

    [30]

    BHUSHAN K, FONG P T, HALEY S C. Lateral load tests on drilled piers in stiff clays [J]. Journal of the Geotechnical Engineering Division, 1979, 105(8): 969 − 985. doi: 10.1061/AJGEB6.0000843

    [31]

    MCADAM R A, BYRNE B W, HOULSBY G T, et al. Monotonic laterally loaded pile testing in a dense marine sand at Dunkirk [J]. Géotechnique, 2020, 70(11): 986 − 998.

  • 期刊类型引用(3)

    1. 傅向荣,陈璞,孙树立,袁明武. 弹性力学有限元分析中的平衡与协调理论. 工程力学. 2023(02): 8-16 . 本站查看
    2. 谢凌洁,肖映雄,徐亚飞. 重力坝问题的非结构分层四边形高阶亚参元分析. 应用力学学报. 2021(03): 902-908 . 百度学术
    3. 李忠学,胡万波. 用于光滑/非光滑壳的稳定化新型协同转动4节点四边形壳单元. 工程力学. 2020(09): 18-29 . 本站查看

    其他类型引用(5)

图(17)  /  表(3)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  29
  • PDF下载量:  20
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-11-18
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-06-25

目录

    /

    返回文章
    返回