CHARACTERISTICS OF WIND LOADS ACTING ON TALL BUILDINGS BASED ON THE MEASURED WIND FIELD IN URBAN CENTER
-
摘要:
风剖面是影响高层建筑风荷载特性的主要因素。为了探究城市中心区风场下高层建筑的风荷载特性,选取了北京气象塔2013年−2017年连续观测的实测风速数据,采用指数率模型并结合城市边界层分层结构对实测风场风剖面进行了拟合。通过刚性模型风洞测压试验得到了宽厚比D/B=1, 2, 4三种超高层建筑在实测风场下的风荷载,并将试验结果同规范中的B、D类风场进行了对比。研究表明:基于分层结构,采用指数率模型拟合得到的实测风场幂指数为0.35,其平均风速剖面同D类风场相似,湍流度剖面则大于D类风场;与B、D类风场下的风荷载相比,实测风场对超高层建筑的平均风荷载影响较小,对脉动风荷载的影响较大,且建筑宽厚比增大后,其在实测风场下的脉动风效应显著增强;建筑基底横风向和扭转向力矩系数间具有较强的相关性,且存在极值相关性,特别是90°风向角时的D/B=4建筑,两种相关性在实测风场下均显著增强。
Abstract:The wind profile is a main factor affecting wind load characteristics of tall buildings. To investigate characteristics of wind loads acting on tall buildings in urban central wind field, the measured wind speed data observed continuously from the Beijing Meteorological Tower during 2013-2017 was selected and the power-law was used to fit the measured wind profile based on the layered structure of the urban boundary layer. Wind loads of super-tall buildings with side ratios D/B=1, 2 and 4 in the measured wind field were obtained by carrying out a pressure test of rigid models in a wind tunnel and the results were compared with B and D wind fields in the code. The researches show that based on the layered structure, the power exponent of the measured wind field fitted by the power-law is 0.35. The mean wind velocity profile is similar to the D wind field, while the turbulence profile is larger than that of the D wind field. Compared with the wind load in B and D wind fields, the measured wind field has less effect on the mean wind load of super-tall buildings but a greater effect on the fluctuating wind load. Moreover, with the increase of the building side ratio, the fluctuating wind effect is enhanced significantly under the measured wind field. There is a strong correlation between the across-wind and torsional moment coefficients at the base, and correlation in the extreme values exists, especially for the building with D/B=4 at 90° wind direction, while two kinds of correlations are both enhanced in the measured wind field.
-
-
表 1 不同分层结构的风剖面拟合结果
Table 1 Fitting results of wind profiles with different layered structures
拟合使用的高度组合/m 高度组合所在的分层
结构情况幂指数α 可决系数
R2/(%)A组:32 47 64 80 粗糙子层 0.32 97.97 B组:32 47 64 80 140 粗糙子层,惯性子层 0.37 98.23 C组:32 47 64 80 140
200 280粗糙子层,惯性子层,
混合层0.35 98.23 表 2 建筑典型高度处的特征湍流度
Table 2 Characteristic turbulence intensity at typical heights of buildings
/(%) 高度 风场类型 B类 D类 实测 0.25 Hr 11.8 20.3 23.0 0.50 Hr 10.4 18.0 20.2 0.63 Hr 10.0 17.0 19.2 0.75 Hr 9.6 16.1 18.4 1.00 Hr 9.1 14.7 16.9 1.25 Hr 8.9 13.7 15.6 表 3 建筑基底力矩间的相关系数
Table 3 Correlation coefficients between the base moments of buildings
风向角/
(°)基底
方向D/B=1 D/B=2 D/B=4 B类 D类 实测 B类 D类 实测 B类 D类 实测 0 Mx-My 0.01 0.02 0.03 0.00 0.01 0.00 0.01 0.00 0.00 Mx-Mt 0.60 0.54 0.54 0.73 0.69 0.68 0.50 0.47 0.49 My-Mt 0.04 0.05 0.06 0.02 0.01 0.00 0.01 0.01 0.02 90 Mx-My 0.01 0.03 0.04 0.03 0.00 0.00 0.00 0.04 0.06 Mx-Mt 0.04 0.03 0.06 0.05 0.04 0.07 0.01 0.04 0.04 My-Mt 0.58 0.52 0.50 0.49 0.32 0.28 0.53 0.79 0.81 -
[1] SHU Z R, LI Q S, HE Y C, et al. Vertical wind profiles for typhoon, monsoon and thunderstorm winds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 190 − 199. doi: 10.1016/j.jweia.2017.06.004
[2] HE J Y, LI Q S, CHAN P W, et al. Characteristics and vertical profiles of mean wind and turbulence for typhoon, monsoon, and thunderstorm winds [J]. Journal of Structural Engineering, 2021, 147(11): 04021188. doi: 10.1061/(ASCE)ST.1943-541X.0003156
[3] 李正农, 冯豪, 蒲鸥, 等. 基于六旋翼无人机搭载风速仪的边界层风剖面实测研究[J]. 工程力学, 2021, 38(8): 121 − 132. doi: 10.6052/j.issn.1000-4750.2020.08.0553 LI Zhengnong, FENG Hao, PU Ou, et al. Boundary layer wind profile measurement based on a six-rotor UAV anemometer [J]. Engineering Mechanics, 2021, 38(8): 121 − 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0553
[4] DAVENPORT A G. Rationale for determining design wind velocities [J]. Journal of the Structural Division , American Society of Civil Engineers, 1960, 86(5): 39 − 68.
[5] KAREEM A, CERMAK J E. Pressure fluctuations on a square building model in boundary-layer flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1984, 16(1): 17 − 41. doi: 10.1016/0167-6105(84)90047-3
[6] CHOI H, KANDA J. Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46/47: 507 − 516. doi: 10.1016/0167-6105(93)90318-I
[7] KIM Y C, KANDA J. Characteristics of aerodynamic forces and pressures on square plan buildings with height variations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(8/9): 449 − 465.
[8] KIM Y C, KANDA J. Wind pressures on tapered and set-back tall buildings [J]. Journal of Fluids and Structures, 2013, 39: 306 − 321. doi: 10.1016/j.jfluidstructs.2013.02.008
[9] 顾明, 唐意, 全涌. 矩形超高层建筑横风向脉动风力. Ⅰ: 基本特征[J]. 振动与冲击, 2010, 29(6): 42 − 45, 104, 234. doi: 10.3969/j.issn.1000-3835.2010.06.010 GU Ming, TANG Yi, QUAN Yong. Fluctuating force of across- wind acting on rectangular super-tall buildings. part Ⅰ: basic characteristics [J]. Journal of Vibration and Shock, 2010, 29(6): 42 − 45, 104, 234. (in Chinese) doi: 10.3969/j.issn.1000-3835.2010.06.010
[10] 全涌, 张正维, 顾明, 等. 矩形截面高层建筑的横风向基底弯矩系数均方根值研究[J]. 土木工程学报, 2012, 45(4): 63 − 70. doi: 10.15951/j.tmgcxb.2012.04.015 QUAN Yong, ZHANG Zhengwei, GU Ming, et al. Study of the RMS values of across-wind aerodynamic base moment coefficients of high-rise buildings with square or rectangular sections [J]. China Civil Engineering Journal, 2012, 45(4): 63 − 70. (in Chinese) doi: 10.15951/j.tmgcxb.2012.04.015
[11] 曹会兰, 全涌, 顾明. 修角对方形超高层建筑横风向气动阻尼的影响[J]. 工程力学, 2013, 30(11): 87 − 93, 100. doi: 10.6052/j.issn.1000-4750.2012.07.0547 CAO Huilan, QUAN Yong, GU Ming. Effect of corner-cut and tapering on across-wind aerodynamic damping of square high-rise buildings [J]. Engineering Mechanics, 2013, 30(11): 87 − 93, 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.07.0547
[12] 李波, 杨庆山, 田玉基, 等. 锥形超高层建筑脉动风荷载特性[J]. 建筑结构学报, 2010, 31(10): 8 − 16. doi: 10.14006/j.jzjgxb.2010.10.002 LI Bo, YANG Qingshan, TIAN Yuji, et al. Characteristics of turbulent wind load of tapered super-tall building [J]. Journal of Building Structures, 2010, 31(10): 8 − 16. (in Chinese) doi: 10.14006/j.jzjgxb.2010.10.002
[13] 李波, 杨庆山, 田玉基, 等. 锥形超高层建筑横风向风荷载模型[J]. 应用基础与工程科学学报, 2014, 22(6): 1195 − 1203. doi: 10.16058/j.issn.1005-0930.2014.06.016 LI Bo, YANG Qingshan, TIAN Yuji, et al. Mathematic model of across-wind load on tapered supper-tall building [J]. Journal of Basic Science and Engineering, 2014, 22(6): 1195 − 1203. (in Chinese) doi: 10.16058/j.issn.1005-0930.2014.06.016
[14] 刘阳, 刘辉志, 王雷. 北京城市下垫面大气边界层湍流输送垂直分布特征[J]. 中国科学:地球科学, 2017, 47(10): 1243 − 1256. LIU Yang, LIU Huizhi, WANG Lei. The vertical distribution characteristics of integral turbulence statistics in the atmospheric boundary layer over an urban area in Beijing [J]. Science China Earth Sciences, 2017, 47(10): 1243 − 1256. (in Chinese)
[15] KATO N, OHKUMA T, KIM J R, et al. Full scale measurements of wind velocity in 2 urban areas using an ultrasonic anemometer [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1/2/3): 67 − 78.
[16] DREW D R, BARLOW J F, LANE S E. Observations of wind speed profiles over Greater London, UK, using a Doppler lidar [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 121: 98 − 105. doi: 10.1016/j.jweia.2013.07.019
[17] LI Q S, ZHI L H, HU F. Boundary layer wind structure from observations on a 325 m tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 818 − 832. doi: 10.1016/j.jweia.2010.08.001
[18] 田玉基, 杨庆山, 杨娜, 等. 北京气象塔湍流风速谱的统计模型[J]. 中国科学:技术科学, 2011, 41(11): 1460 − 1468. doi: 10.1360/ze2011-41-11-1460 TIAN Yuji, YANG Qingshan, YANG Na, et al. Statistical spectrum model of wind velocity at Beijing Meteorological Tower [J]. Scientia Sinica (Technologica), 2011, 41(11): 1460 − 1468. (in Chinese) doi: 10.1360/ze2011-41-11-1460
[19] ZHANG S, YANG Q S, SOLARI G, et al. Characteristics of thunderstorm outflows in Beijing urban area [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 195: 104011. doi: 10.1016/j.jweia.2019.104011
[20] 王京学, 杨庆山, 孙霖等. 基于2013年马甸桥北气象塔实测数据的北京城区地貌风速谱分析[J]. 工程力学, 2020, 37(2): 250 − 256. doi: 10.6052/j.issn.1000-4750.2019.04.0157 WANG Jingxue, YANG Qingshan, SUN Lin, et al. Analysis of the wind speed spectrum in the urban area of Beijing based on the measured data of the Ma Dian Qiao Bei Meteorological Tower in 2013 [J]. Engineering Mechanics, 2020, 37(2): 250 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0157
[21] LI B, LI C, YANG Q S, et al. Full-scale wind speed spectra of 5 Year time series in urban boundary layer observed on a 325m meteorological tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218: 104791. doi: 10.1016/j.jweia.2021.104791
[22] 张鑫鑫, 李波, 张石, 等. 基于北京中心城区实测的城市边界层风场特性[J]. 建筑结构学报, 2022, 43(3): 109 − 117. doi: 10.14006/j.jzjgxb.2020.0432 ZHANG Xinxin, LI Bo, ZHANG Shi, et al. Characteristics of wind field in urban boundary layer based on measured data in central Beijing [J]. Journal of Building Structures, 2022, 43(3): 109 − 117. (in Chinese) doi: 10.14006/j.jzjgxb.2020.0432
[23] MIAO S G, DOU J X, CHEN F, et al. Analysis of observations on the urban surface energy balance in Beijing [J]. Science China Earth Sciences, 2012, 55(11): 1881 − 1890. doi: 10.1007/s11430-012-4411-6
[24] EMEIS S, BAUMANN-STANZER K, PIRINGER M, et al. Wind and turbulence in the urban boundary layer analysis from acoustic remote sensing data and fit to analytical relations [J]. Meteorologische Zeitschrift, 2007, 16(4): 393 − 406.
[25] FORTUNIAK K, PAWLAK W, SIEDLECKI M. Integral turbulence statistics over a central European city Centre [J]. Boundary-Layer Meteorology, 2013, 146(2): 257 − 276.
[26] PELLICCIONI A, MONTI P, LEUZZI G. Wind-speed profile and roughness sublayer depth modelling in urban boundary layers [J]. Boundary-Layer Meteorology, 2016, 160(2): 225 − 248. doi: 10.1007/s10546-016-0141-1
[27] HALIOS C H, BARLOW J F. Observations of the morning development of the urban boundary layer over London, UK, taken during the ACTUAL project [J]. Boundary-Layer Meteorology, 2018, 166(3): 395 − 422. doi: 10.1007/s10546-017-0300-z
[28] 贾怀勤, 杜学孔 . 应用统计[M]. 第5版. 北京: 对外经济贸易大学出版社 , 2010. JIA Huaiqin, DU Xuekong. Applied statistics [M]. 5th ed. Beijing: University of International Business and Economics Press, 2010. (in Chinese)
[29] GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012. GB 50009−2012, Load code for the design of building structures[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
[30] LI B, YANG Q S, SOLARI G, et al. Investigation of wind load on 1, 000 m-high super‐tall buildings based on HFFB tests [J]. Structural Control and Health Monitoring, 2018, 25(2): e2068.
[31] SAATHOFF P J, MELBOURNE W H. Effects of free-stream turbulence on surface pressure fluctuations in a separation bubble [J]. Journal of Fluid Mechanics, 1997, 337: 1 − 24. doi: 10.1017/S0022112096004594
[32] ZHANG Q S, LIU Y Z. Wall-pressure fluctuations of separated and reattaching flow over blunt plate with chord-to-thickness ratio c/d=9.0 [J]. Experimental Thermal and Fluid Science, 2012, 42: 125 − 135. doi: 10.1016/j.expthermflusci.2012.04.019
[33] ZHANG Q S, LIU Y Z. Separated flow over blunt plates with different chord-to-thickness ratios: Unsteady behaviors and wall-pressure fluctuations [J]. Experimental Thermal and Fluid Science, 2017, 84: 199 − 216. doi: 10.1016/j.expthermflusci.2017.02.007
[34] TAMURA Y, KIKUCHI H, HIBI K. Quasi-static wind load combinations for low- and middle-rise buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12/13/14/15): 1613 − 1625.
[35] TAMURA Y, KIKUCHI H, HIBI K. Peak normal stresses and effects of wind direction on wind load combinations for medium-rise buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 1043 − 1057.
[36] TAMURA Y, KIM Y C, KIKUCHI H, et al. Correlation and combination of wind force components and responses [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 125: 81 − 93. doi: 10.1016/j.jweia.2013.11.015
-
期刊类型引用(15)
1. 贺鹏,黄选明,滕东宇,黄广华,郝祯,孙嘉伟. 大城砖-传统灰浆砌体力学特性及破坏机理试验研究. 建筑科学. 2025(01): 9-19 . 百度学术
2. 马少春,李泽云,苗长伟,鲍鹏,孔令鹏,王梦. 不同损伤程度下历史建筑青砖抗盐侵蚀性能评价. 河南大学学报(自然科学版). 2025(02): 236-245 . 百度学术
3. 汪源,余文,王艳,黄辉,贾彬,王汝恒. 藏式毛石砌体受压力学性能试验与数值模拟研究. 建筑结构. 2024(08): 113-119 . 百度学术
4. 梁建国,赵一帆,陈大川,徐培军,李振华,王高峰. 注浆加固毛石砌体的受压性能试验研究. 建筑结构. 2023(24): 136-140 . 百度学术
5. 崔玥,杨娜. 藏式山地古建筑结构特征及抗震性能. 建筑结构学报. 2023(S2): 20-31 . 百度学术
6. 白凡,杨娜,常鹏,旦增格桑,旦增卓嘎,滕东宇. 基于模糊层次法的藏式砌体劣化风险权重系数试验标定研究. 土木与环境工程学报(中英文). 2022(02): 158-164 . 百度学术
7. 蒋宇洪,杨娜. 基于RVE单元的石砌体有效模量计算方法. 工程力学. 2022(04): 86-99+256 . 本站查看
8. 汪源,黄辉,贾彬,王汝恒. 传统藏式毛石砌体受压力学性能试验研究. 建筑结构. 2022(08): 118-123 . 百度学术
9. 吴芝忠,黄辉,汪源,贾彬,王汝恒. 藏式毛石砌体抗压强度对其弹性模量和峰值应变预测. 科学技术与工程. 2022(25): 11130-11136 . 百度学术
10. 丛宇,谭森龙,王佳豪. 藏式建筑震害分析及加固方法研究. 山西建筑. 2022(24): 24-28+51 . 百度学术
11. 刘威,杨娜,白凡,常鹏. 基于环境激励的藏式古城墙动力特性研究. 土木工程学报. 2021(04): 45-56 . 百度学术
12. 孙宏伟,贾艳艳,王少杰,倪韦斌,殷志凯. 现存干砌毛石墙抗震性能试验与原貌保护策略. 工程抗震与加固改造. 2021(02): 117-124 . 百度学术
13. 常鹏,吴楠楠,王钊,杨娜,白凡. 藏式山地结构有限元模型修正及动力可靠度分析. 土木工程学报. 2020(06): 13-20+41 . 百度学术
14. 蒋宇洪,杨娜,白凡. 基于RVE单元的藏式古建石砌体均质化研究. 工程力学. 2020(07): 110-124 . 本站查看
15. 郑文忠,敖日格乐,王英,黄文宣. 碱矿渣陶粒混凝土砌块砌体受压本构关系. 工程力学. 2020(10): 218-227 . 本站查看
其他类型引用(10)