基于多种风险因素的矸石山边坡风险评价

杜岩, 白云飞, 张晓勇, 谢谟文, 马国星

杜岩, 白云飞, 张晓勇, 谢谟文, 马国星. 基于多种风险因素的矸石山边坡风险评价[J]. 工程力学, 2022, 39(10): 249-256. DOI: 10.6052/j.issn.1000-4750.2021.06.0427
引用本文: 杜岩, 白云飞, 张晓勇, 谢谟文, 马国星. 基于多种风险因素的矸石山边坡风险评价[J]. 工程力学, 2022, 39(10): 249-256. DOI: 10.6052/j.issn.1000-4750.2021.06.0427
DU Yan, BAI Yun-fei, ZHANG Xiao-yong, XIE Mo-wen, MA Guo-xing. RISK ASSESSMENT OF COAL GANGUE SLOPE CONSIDERING MULTIPLE RISK FACTORS[J]. Engineering Mechanics, 2022, 39(10): 249-256. DOI: 10.6052/j.issn.1000-4750.2021.06.0427
Citation: DU Yan, BAI Yun-fei, ZHANG Xiao-yong, XIE Mo-wen, MA Guo-xing. RISK ASSESSMENT OF COAL GANGUE SLOPE CONSIDERING MULTIPLE RISK FACTORS[J]. Engineering Mechanics, 2022, 39(10): 249-256. DOI: 10.6052/j.issn.1000-4750.2021.06.0427

基于多种风险因素的矸石山边坡风险评价

基金项目: 国家重点研发计划项目(2018YFE0101100);国家自然科学基金项目(41572274,41702371);中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室开放基金课题项目(SKLGDUEK2130)
详细信息
    作者简介:

    杜 岩(1985−),男,河南新乡人,副教授,工学博士,硕导,主要从事防灾减灾方面的应用研究(E-mail: mutulei@163.com)

    白云飞(1997−),男,河北石家庄人,硕士生,主要从事岩土工程灾害防治方面的研究(E-mail: 2422654155@qq.com)

    张晓勇(1992−),男,河北邢台人,博士生,主要从事防灾减灾方面的应用研究(E-mail: 2418203296@qq.com)

    马国星(1996−),男,宁夏银川人,工程硕士,主要从事防灾减灾方面的应用研究(E-mail: 1780991702@qq.com)

    通讯作者:

    谢谟文(1965−),男,湖北荆州人,教授,工学博士,博导,主要从事空间技术防灾减灾应用研究(E-mail: mowenxie@126.com)

  • 中图分类号: X936

RISK ASSESSMENT OF COAL GANGUE SLOPE CONSIDERING MULTIPLE RISK FACTORS

  • 摘要: 该研究应用可拓理论综合考虑影响矸石边坡稳定的8种风险指标,建立了一套新的矸石边坡稳定性风险评价模型。与传统可拓理论评价模型相比,新模型在可拓距计算方面进行改进,并采用主客观权重相结合的综合分析法对8种风险指标进行权重分析,降低了传统理论算法在边坡稳定性风险评价过程中的系统误差。选取王家岭矸石边坡为案例,经新的边坡稳定性风险评价模型得出,2020年7月7日−2020年8月14日的风险等级变量特征值由原有的1.284上升到2.263,风险等级由低风险上升至中低风险等级,实现了现场矸石山边坡风险的定量评价。通过多个矸石边坡案例应用研究,发现改进的稳定性风险评价模型所得风险等级变量特征可与现有的边坡稳定性评估技术结合使用,实现矿山边坡安全指标与风险指标的综合评价。此外,该方法可以分析现场的实时监测数据,为矿山边坡安全风险评价提供一种客观简便的分析方法,进而有效改变目前矿山边坡工程监测重采集、轻分析的现状。
    Abstract: The study comprehensively considered 8 risk factors affecting the stability of gangue slope by applying extension theory, and established a new risk assessment model for the stability of gangue slope. Compared with the traditional extension theory-based evaluation model, the new model is improved in the calculation of extension distance, and it uses subjective and objective analysis method to comprehensively analyze 8 risk weight indices, thus it can reduce the systematic error of the traditional theory algorithm in the risk evaluation of slope stability. Taking Wangjialing gangue slope as a case, the risk assessment for slope stability concludes that the characteristic value of risk level increases from the original 1.284 at July 7th, 2020 to 2.263 at August 14th, 2020, and the risk level increases from low risk to medium low risk, thus achieves a quantitative risk assessment of coal gangue slope. Through applications in a number of gangue slope cases, it is concluded that the instability risk analysis based on improved extension theory evaluation model can be used in combination with existing slope stability assessment tools, and realize the comprehensive evaluation of mine slope safety index and risk index. In addition, by analyzing the on-site monitoring data index, the method can provide an objective and effective risk analysis method for mine slope, and improve the current situation that slope monitoring pays more attention to data acquisition than data analysis.
  • 图  1   矸石边坡风险评价指标体系图

    Figure  1.   Chart of risk evaluation index system of gangue slope

    图  2   矸石边坡失稳风险评价模型

    Figure  2.   Risk assessment model for failure of gangue slope

    图  3   降雨强度与风险等级变量特征值关系

    Figure  3.   The relationship between the daily rainfall and the characteristic value of risk level

    表  1   矸石边坡风险指标与风险等级对应表

    Table  1   Corresponding table between risk index and risk grade of gangue slope

    评价指标Ⅰ级Ⅱ级Ⅲ级Ⅳ级
    内摩擦角/(°)[38,50][31,38)[27,31)[0,27)
    黏聚力/kPa[40,80][16,40)[8,16)[0,8)
    边坡高度/m[0,43)[43,98)[98,144)[144,200]
    边坡坡度/(°)[0,33)[33,40)[40,46)[46,60]
    不均匀系数[11,20][6,11)[4,6)[1,4)
    层厚比[1/2,3/4)[3/4,9/10)[9/10,19/20)[19/20,1]
    降雨强度/mm[0,25)[25,50)[50,100)[100,150]
    场地温度/(℃)[0,30)[30,50)[50,90)[90,300]
    下载: 导出CSV

    表  2   层次分析法判断矩阵

    Table  2   Judgment matrix of analytic hierarchy process

    风险
    指标
    内摩
    擦角
    黏聚力高度坡度不均匀
    系数
    层厚比降雨
    强度
    场地
    温度
    内摩擦角11/2325423
    黏聚力21436534
    高度1/31/411/3321/21
    坡度1/21/3314312
    不均匀系数1/51/61/31/411/21/41/3
    层厚比1/41/51/21/3211/31/2
    降雨强度1/21/3214312
    场地温度1/31/411/2321/21
    下载: 导出CSV

    表  3   两种工况的风险评价指标取值

    Table  3   The values of risk index under two working conditions

    评价指标监测日期
    2020/7/72020/8/14
    内摩擦角/(°)30.5430.54
    黏聚力/kPa6.486.48
    边坡高度/m6060
    边坡坡度/(°)26.626.6
    不均匀系数1616
    层厚比10/1110/11
    降雨强度/mm041
    场地温度/(°)63.7951.58
    下载: 导出CSV

    表  4   各风险指标综合权重

    Table  4   The comprehensive weight of each risk index

    综合权重监测日期
    2020/7/72020/8/14
    内摩擦角0.09940.1440
    黏聚力0.18750.2717
    边坡高度0.06320.0916
    边坡坡度0.14540.2107
    不均匀系数0.06020.0872
    层厚比0.01800.0261
    降雨强度0.31610.1230
    场地温度0.11030.0458
    下载: 导出CSV

    表  5   不同工况下关联度与风险等级表

    Table  5   Correlation degree and risk level under different working conditions

    风险指标监测日期
    2020/7/72020/8/14
    K1−0.1291−0.2636
    K2−0.4993−0.1844
    K3−0.4153−0.2195
    K4−0.4766−0.2784
    max(Kj)−0.1291−0.1844
    风险等级III
    j*1.2842.263
    下载: 导出CSV

    表  6   矸石山工程案例风险综合评价

    Table  6   Comprehensive risk assessment of different coal gangue slopes

    工程案例稳定性系数风险等级特征值风险等级
    中梁山[20]1.2931.464低风险
    大雁[21]1.311.116低风险
    屯兰[22]0.9273.402中高风险
    田师傅[23]1.2031.961中低风险
    南桐[24]1.0791.788中低风险
    王家岭*1.3661.284低风险
    王家岭**1.2162.263中低风险
    注:王家岭*与王家岭**分别为7月7日与8月14日两种不同工况下的矸石山边坡的稳定情况。
    下载: 导出CSV
  • [1] 周楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报, 2020, 37(1): 136 − 146.

    ZHOU Nan, YAO Yinan, SONG Weijian, et al. Present situation and prospect of coal gangue treatment technology [J]. Journal of Mining & Safety Engineering, 2020, 37(1): 136 − 146. (in Chinese)

    [2]

    LI A, CHEN C, CHEN J, et al. Experimental investigation of temperature distribution and spontaneous combustion tendency of coal gangue stockpiles in storage [J]. Environmental Science and Pollution Research, 2021, 28(26): 34489 − 34500. doi: 10.1007/s11356-021-12964-0

    [3]

    ZHAI X, WU S, WANG K, et al. Environment influences and extinguish technology of spontaneous combustion of coal gangue heap of baijigou coal mine in China [J]. Energy Procedia, 2017, 136: 66 − 72. doi: 10.1016/j.egypro.2017.10.326

    [4] 杨智勇, 李典庆, 曹子君, 等. 考虑土质边坡多失效模式的区域概率风险分析方法[J]. 工程力学, 2019, 36(5): 216 − 225, 234. doi: 10.6052/j.issn.1000-4750.2018.03.0171

    YANG Zhiyong, LI Dianqing, CAO Zijun, et al. Region probability method for soil slope risk assessment involving multiple failure modes [J]. Engineering Mechanics, 2019, 36(5): 216 − 225, 234. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0171

    [5]

    LI D, JIANG S, CHEN Y, et al. System reliability analysis of rock slope stability involving correlated failure modes [J]. KSCE Journal of Civil Engineering, 2011(15): 1349 − 1359.

    [6] 文海家, 张永兴, 陈云. 基于三维地质信息模型的边坡风险分析[J]. 岩土力学, 2009, 30(2): 367 − 370.

    WEN Haijia, ZHANG Yongxing, CHEN Yun. Slope risk assessment based on a 3D geo-information model [J]. Rock and Soil Mechanics, 2009, 30(2): 367 − 370. (in Chinese)

    [7] 栾婷婷, 谢振华, 何娜, 等. 基于未确知测度理论的排土场滑坡风险评价模型[J]. 中南大学学报(自然科学版), 2014, 45(5): 1612 − 1617.

    LUAN Tingting, XIE Zhenhua, HE Na, et al. Risk evaluation model of waste dump landslide based on uncertainty measurement theory [J]. Journal of Central South University (Science and Technology), 2014, 45(5): 1612 − 1617. (in Chinese)

    [8] 柯劲松, 张李荪, 刘胜. 基于小波神经网络的第四系覆盖层边坡风险评价[J]. 人民长江, 2020, 51(7): 136 − 139.

    KE Jinsong, ZHANG Lisun, LIU Sheng. Risk assessment of quaternary overburden slope based on wavelet neural network [J]. Yangtze River, 2020, 51(7): 136 − 139. (in Chinese)

    [9]

    KVELDSVIK V, EINSTEIN H H, NILSEN B, et al. Numerical analysis of the 650 000m2 aknes rock slope based on measured displacements and geotechnical data [J]. Rock Mechanics and Rock Engineering, 2009, 42: 689 − 728.

    [10] 王新民, 康虔, 秦健春, 等. 层次分析法−可拓学模型在岩质边坡稳定性安全评价中的应用[J]. 中南大学学报(自然科学版), 2013, 44(6): 2455 − 2462.

    WANG Xinmin, KANG Qian, QIN Jianchun, et al. Practice on comprehensive treatment of coal rejects hills and deep processing technology of coal rejects [J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2455 − 2462. (in Chinese)

    [11]

    XU Z X, ZHOU X P. Three-dimensional reliability analysis of seismic slopes using the copula-based sampling method [J]. Engineering Geology, 2018, 242: 81 − 91. doi: 10.1016/j.enggeo.2018.05.020

    [12]

    SOHAG K. An overview of fault tree analysis and its application in model based dependability analysis [J]. Expert Systems with Applications, 2017, 77: 114 − 135.

    [13]

    XUE X. Prediction of slope stability based on hybrid PSO and LSSVM [J]. Journal of Computing in Civil Engineering, 2016: 04016041.

    [14] 蔡文. 可拓工程方法 [M]. 北京: 科学技术出版社, 2007.

    CAI Wen. Extension engineering technique [M]. Beijing: Science and Technology Press, 2007. (in Chinese)

    [15] 李克钢, 许江, 李树春, 等. 基于可拓理论的边坡稳定性评价研究[J]. 重庆建筑大学学报, 2007, 29(4): 76 − 78.

    LI Kegang, XU Jiang, LI Shuchun, et al. Research on evaluation of the slope stability based on the extension theory [J]. Journal of Chongqing Jianzhu University, 2007, 29(4): 76 − 78. (in Chinese)

    [16] 邢永强, 冯进城, 荣晓伟. 河南平煤四矿煤矸石山自燃爆炸成因及防治分析[J]. 中国地质灾害与防治学报, 2007, 18(2): 145 − 150. doi: 10.3969/j.issn.1003-8035.2007.02.028

    XING Yongqiang, FENG Jincheng, RONG Xiaowei. Discussion on causes of combustion and explosion and of coal gangue at the No. 4 mine of Pingdingshan coal mine and countermeasures [J]. The Chinese Journal of Geological Hazards and Control, 2007, 18(2): 145 − 150. (in Chinese) doi: 10.3969/j.issn.1003-8035.2007.02.028

    [17]

    ALISON M, ISMET C, DAN P, et al. New risk assessment methodology for coal mine excavated slopes [J]. International Journal of Mining Science and Technology, 2018, 28(4): 583 − 592.

    [18]

    XIAO H, GUO G, CHEN L. Research on dynamic evaluation model of slope risk based on improved VW-UM [J]. Mathematical Problems in Engineering, 2019(2): 1 − 13.

    [19]

    GUPTA T, RAI R, JAISWAL A, et al. Sensitivity analysis of coal rib stability for internal mine dump in opencast mine by finite element modelling [J]. Geotechnical & Geological Engineering, 2014, 32(3): 705 − 712.

    [20] 董倩. 重庆地区矸石山堆积形态及稳定性分析研究 [D]. 重庆: 重庆大学, 2006.

    DONG Qian. Accumulation form and stability analysis of waste dump in Chongqing area [D]. Chongqing: Chongqing University, 2006. (in Chinese)

    [21] 刘宏磊, 刘玉娟, 刘占敏, 等. 矸石山边坡稳定特征的FLAC3D数值模拟分析[J]. 西部资源, 2013(4): 92 − 94.

    LIU Honglei, LIU Yujuan, LIU Zhanmin, et al. Slope stability analysis of coal gangue hill based on FLAC3D numerical simulation [J]. Western Resources, 2013(4): 92 − 94. (in Chinese)

    [22] 马俊生. 基于GeoStudio的矸石山边坡稳定性数值模拟研究[J]. 山西焦煤科技, 2017, 41(11): 31 − 34, 42.

    MA Junsheng. Numerical simulation study on slope stability in gangue dump based on GeoStudio [J]. Shanxi Coking Coal Science & Technology, 2017, 41(11): 31 − 34, 42. (in Chinese)

    [23] 武振. 田师傅煤矿第一矸石山边坡稳定性分析及治理措施 [D]. 阜新: 辽宁工程技术大学, 2016.

    WU Zhen. Analysis of Tianshifu coal mine first coal gangue slope stability and government measures [D]. Fuxin: Liaoning Technical University, 2016. (in Chinese)

    [24] 粟俊江. 南桐煤矿矸石山的稳定性分析及防治措施研究 [D]. 重庆: 重庆大学, 2008.

    LI Junjiang. Stability analysis study and research of prevention and cure measure of waste dump in Nantong coal mine [D]. Chongqing: Chongqing University, 2008. (in Chinese)

    [25]

    XIA P, HU X, WU S, et al. Slope stability analysis based on group decision theory and fuzzy comprehensive evaluation [J]. Journal of Earth Science, 2020, 31(6): 1121 − 1132. doi: 10.1007/s12583-020-1101-8

    [26]

    SREEPARVATHY V, SRINIVAS V V. A fuzzy entropy approach for design of hydrometric monitoring networks [J]. Journal of Hydrology, 2020, 586(4): 124797.

    [27] 杨贺, 王立伟, 郝圣旺. 基于倾角演化的滑坡监测及稳定过程[J]. 工程力学, 2020, 37(增刊 1): 193 − 199. doi: 10.6052/j.issn.1000-4750.2019.04.S035

    YANG He, WANG Liwei, HAO Shengwang. Landslide monitoring and its stability process based on an in-situ tilt monitoring system [J]. Engineering Mechanics, 2020, 37(Suppl 1): 193 − 199. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S035

    [28]

    KHAN K U J, WANG C, KHAN M W J, et al. Influence of rainfall infiltration on the stability of unsaturated coal gangue accumulated slope [J]. Journal of Mountain Science, 2021, 18: 1696 − 1709. doi: 10.1007/s11629-020-6567-4

    [29]

    JIA B, WU Z, DU Y. Real-time stability assessment of unstable rocks based on fundamental natural frequency [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104134. doi: 10.1016/j.ijrmms.2019.104134

    [30] 杨天鸿, 王赫, 董鑫, 等. 露天矿边坡稳定性智能评价研究现状、存在问题及对策[J]. 煤炭学报, 2020, 45(6): 2277 − 2295.

    YANG Tianhong, WANG He, DONG Xin, et al. Current situation, problems and countermeasures of intelligent evaluation of slope stability in open pit [J]. Journal of China Coal Society, 2020, 45(6): 2277 − 2295. (in Chinese)

    [31] 许镇, 赵鹏举, 郑哲, 等. 中国宜宾、日本山形、美国加州Ridgecrest地震破坏力分析与对比[J]. 工程力学, 2019, 36(11): 195 − 202. doi: 10.6052/j.issn.1000-4750.2019.07.0408

    XU Zhen, ZHAO Pengju, ZHENG Zhe, et al. Analysis and comparison of seismic damage in China Yibin, Japan Yamagata and U. S. California Ridgecrest earthquakes [J]. Engineering Mechanics, 2019, 36(11): 195 − 202. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0408

  • 期刊类型引用(15)

    1. 贺鹏,黄选明,滕东宇,黄广华,郝祯,孙嘉伟. 大城砖-传统灰浆砌体力学特性及破坏机理试验研究. 建筑科学. 2025(01): 9-19 . 百度学术
    2. 马少春,李泽云,苗长伟,鲍鹏,孔令鹏,王梦. 不同损伤程度下历史建筑青砖抗盐侵蚀性能评价. 河南大学学报(自然科学版). 2025(02): 236-245 . 百度学术
    3. 汪源,余文,王艳,黄辉,贾彬,王汝恒. 藏式毛石砌体受压力学性能试验与数值模拟研究. 建筑结构. 2024(08): 113-119 . 百度学术
    4. 梁建国,赵一帆,陈大川,徐培军,李振华,王高峰. 注浆加固毛石砌体的受压性能试验研究. 建筑结构. 2023(24): 136-140 . 百度学术
    5. 崔玥,杨娜. 藏式山地古建筑结构特征及抗震性能. 建筑结构学报. 2023(S2): 20-31 . 百度学术
    6. 白凡,杨娜,常鹏,旦增格桑,旦增卓嘎,滕东宇. 基于模糊层次法的藏式砌体劣化风险权重系数试验标定研究. 土木与环境工程学报(中英文). 2022(02): 158-164 . 百度学术
    7. 蒋宇洪,杨娜. 基于RVE单元的石砌体有效模量计算方法. 工程力学. 2022(04): 86-99+256 . 本站查看
    8. 汪源,黄辉,贾彬,王汝恒. 传统藏式毛石砌体受压力学性能试验研究. 建筑结构. 2022(08): 118-123 . 百度学术
    9. 吴芝忠,黄辉,汪源,贾彬,王汝恒. 藏式毛石砌体抗压强度对其弹性模量和峰值应变预测. 科学技术与工程. 2022(25): 11130-11136 . 百度学术
    10. 丛宇,谭森龙,王佳豪. 藏式建筑震害分析及加固方法研究. 山西建筑. 2022(24): 24-28+51 . 百度学术
    11. 刘威,杨娜,白凡,常鹏. 基于环境激励的藏式古城墙动力特性研究. 土木工程学报. 2021(04): 45-56 . 百度学术
    12. 孙宏伟,贾艳艳,王少杰,倪韦斌,殷志凯. 现存干砌毛石墙抗震性能试验与原貌保护策略. 工程抗震与加固改造. 2021(02): 117-124 . 百度学术
    13. 常鹏,吴楠楠,王钊,杨娜,白凡. 藏式山地结构有限元模型修正及动力可靠度分析. 土木工程学报. 2020(06): 13-20+41 . 百度学术
    14. 蒋宇洪,杨娜,白凡. 基于RVE单元的藏式古建石砌体均质化研究. 工程力学. 2020(07): 110-124 . 本站查看
    15. 郑文忠,敖日格乐,王英,黄文宣. 碱矿渣陶粒混凝土砌块砌体受压本构关系. 工程力学. 2020(10): 218-227 . 本站查看

    其他类型引用(10)

图(3)  /  表(6)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  108
  • PDF下载量:  75
  • 被引次数: 25
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-09-23
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回