Processing math: 100%

平面张弦结构粘弹性阻尼器振动控制研究

韩庆华, 曹馨元, 刘铭劼

韩庆华, 曹馨元, 刘铭劼. 平面张弦结构粘弹性阻尼器振动控制研究[J]. 工程力学, 2021, 38(12): 57-72. DOI: 10.6052/j.issn.1000-4750.2020.11.0849
引用本文: 韩庆华, 曹馨元, 刘铭劼. 平面张弦结构粘弹性阻尼器振动控制研究[J]. 工程力学, 2021, 38(12): 57-72. DOI: 10.6052/j.issn.1000-4750.2020.11.0849
HAN Qing-hua, CAO Xin-yuan, LIU Ming-jie. RESEARCH ON THE VIBRATION CONTROL OF PLANE STRING STRUCTURES USING VISCOELASTIC DAMPERS[J]. Engineering Mechanics, 2021, 38(12): 57-72. DOI: 10.6052/j.issn.1000-4750.2020.11.0849
Citation: HAN Qing-hua, CAO Xin-yuan, LIU Ming-jie. RESEARCH ON THE VIBRATION CONTROL OF PLANE STRING STRUCTURES USING VISCOELASTIC DAMPERS[J]. Engineering Mechanics, 2021, 38(12): 57-72. DOI: 10.6052/j.issn.1000-4750.2020.11.0849

平面张弦结构粘弹性阻尼器振动控制研究

基金项目: 国家自然科学基金项目(U1939208)
详细信息
    作者简介:

    韩庆华(1971−),男,山东人,教授,博士,主要从事大型公共建筑防灾减灾及智能监测研究(E-mail: qhhan@tju.edu.cn)

    曹馨元(1996−),女,天津人,硕士生,主要从事大跨空间钢结构振动控制研究(E-mail: goodcaoyuan@126.com)

    通讯作者:

    刘铭劼(1989−),男,天津人,助理研究员,博士,主要从事钢结构与防灾减灾研究(E-mail: liumingjie@tju.edu.cn)

  • 中图分类号: TU393.3

RESEARCH ON THE VIBRATION CONTROL OF PLANE STRING STRUCTURES USING VISCOELASTIC DAMPERS

  • 摘要: 该文针对采用粘弹性阻尼器替换平面张弦结构跨中撑杆的振动控制方法,开展理论分析和数值仿真研究,揭示其振动控制机理,阐明振动控制效果。推导了上弦节点静力位移公式并推广至动力分析,结合撑杆动力学方程,揭示了粘弹性阻尼器替换平面张弦结构跨中撑杆振动控制耗能机理以及阻尼器刚度系数K与阻尼系数C对结构耗能效果的影响规律,依据耗能最大原则提出了实现最佳减振效果的阻尼器参数取值依据和方法。基于该文提出的刚度系数与阻尼系数取值方法,针对跨度60 m、100 m的张弦梁结构开展了粘弹性阻尼器替换张弦梁结构跨中撑杆参数化数值仿真。由参数化仿真可知,结构峰值加速度、峰值位移和峰值索内应力最大减振效果分别可达42.58%、30.54%和39.05%。减振结构可以满足结构安全以及正常使用需求。证明了粘弹性阻尼器替换平面张弦结构跨中撑杆是有效的振动控制方法,验证了该文提出的振动控制机理的有效性和阻尼器参数取值方法的适用性。
    Abstract: Theoretical analysis and numerical simulation were carried out to reveal the vibration control mechanism and clarify the vibration control effect of using viscoelastic dampers to replace the mid-span struts of plane string structures. The static displacement formula was derived and extended to dynamic analyses. Based on the dynamic equation of the struts, the energy dissipation mechanism was revealed. The influence of the stiffness coefficient K and damping coefficient C on the energy dissipation effect was also revealed. According to the maximum energy dissipation principle, the basis and method of determining the damper parameters to achieve the best damping effect were proposed. Parametric numerical simulation of the vibration damping structure was carried out on a 60 m-span and a 100 m-span beam string structures (BSS), in which the maximum damping effect on the peak acceleration, displacement and cable internal stress were 42.58%, 30.54% and 39.05%, respectively. The damped structures met the safety and normal use requirements. The vibration control method that uses viscoelastic dampers to replace the mid-span struts of plane string structures was proven to be effective. It verifies the accuracy of the proposed vibration control mechanism and the applicability of the design method for the damper parameters.
  • 图  1   张弦梁结构基本体系示意图

    Figure  1.   Basic system of BSS

    图  2   三撑杆张弦梁结构受力分析图

    Figure  2.   Force analysis of three-strut BSS

    图  3   张弦梁节点位移公式求解推广

    Figure  3.   Extension of node displacement formula of BSS

    图  4   张弦梁结构撑杆动力特性

    Figure  4.   Dynamic characteristics of struts in BSS

    图  5   粘弹性阻尼器受力分析

    Figure  5.   Force analysis of viscoelastic damper

    图  6   粘弹性阻尼器力-位移曲线

    Figure  6.   Force-displacement curve of viscoelastic damper

    图  7   平面张弦梁结构减振结构数值模型

    Figure  7.   Numerical model of damped structure of BSS

    图  8   跨度60 m张弦梁结构加速度减振效果-Taft波

    Figure  8.   Acceleration vibration reduction effect of 60 m-span BSS-Taft

    图  9   跨度60 m张弦梁结构位移减振效果-Taft波

    Figure  9.   Displacement vibration reduction effect of 60 m-span BSS-Taft

    图  10   跨度60 m张弦梁结构索内应力减振效果-Taft波

    Figure  10.   Cable stress vibration reduction effect of 60 m-span BSS-Taft

    图  11   跨度60 m张弦梁结构加速度减振效果-多条波

    Figure  11.   Acceleration vibration reduction effect of 60 m-span BSS-Others

    图  12   跨度60 m张弦梁结构位移减振效果-多条波

    Figure  12.   Displacement vibration reduction effect of 60 m-span BSS-Others

    图  13   跨度60 m张弦梁结构索内应力减振效果-多条波

    Figure  13.   Cable stress vibration reduction effect of 60 m-span BSS-Other

    图  14   振动控制效果时域结果

    Figure  14.   Time history analysis of vibration control effect

    图  15   振动控制效果频域结果

    Figure  15.   Spectrum analysis of vibration control effect

    图  16   人致荷载作用下加速度振动控制效果时域结果

    Figure  16.   Time history analysis of acceleration vibration reduction effect under human-induced load

    图  17   拱形平面张弦梁结构减振结构数值模型

    Figure  17.   Numerical model of damping structure of arched BSS

    图  18   拱形张弦梁结构加速度振动控制效果时域结果

    Figure  18.   Time history analysis of acceleration vibration reduction effect of arched BSS

    图  19   跨度100 m张弦梁结构加速度减振效果

    Figure  19.   Acceleration vibration reduction effect of 100 m-span BSS

    图  20   跨度60 m张弦梁结构加速度峰值减振效果

    Figure  20.   Peak acceleration vibration reduction effect of 60 m-span BSS

    图  21   跨度100 m张弦梁结构加速度峰值减振效果

    Figure  21.   Peak acceleration vibration reduction effect of 100 m-span BSS

    表  1   算例张弦梁结构构件参数

    Table  1   Structural member parameters of BSS

    构件弹性模量E/MPa截面尺寸
    上弦梁2.06×105矩形钢管400 mm×300 mm×12 mm
    撑杆2.06×105圆钢管ϕ159 mm×6 mm
    下弦索1.85×105平行钢丝束105×ϕ5mm
    下载: 导出CSV

    表  2   三撑杆张弦梁节点位移有限元及理论解对比

    Table  2   Comparison of numerical and theoretical solution for node displacement of three-strut BSS

    节点有限元解/mm理论解/mm误差/(%)
    上弦节点D1.256 641.257 290.05
    下弦节点E1.250 111.250 770.05
    上弦节点B0.893 730.893 340.04
    下弦节点C0.890 050.888 450.18
    下载: 导出CSV

    表  3   三撑杆张弦梁构件轴力有限元及理论解对比

    Table  3   Comparison of numerical and theoretical solution for component force of three-strut BSS

    构件有限元解/kN理论解/kN误差/(%)
    撑杆DE0.969 570.969 150.04
    撑杆BC0.969 500.969 150.04
    CE4.870 424.869 920.01
    AC5.059 695.059 110.01
    下载: 导出CSV

    表  4   平面张弦梁数值仿真模型结构参数

    Table  4   Structural parameters of BSS numerical simulation model

    结构特征五撑杆张弦梁结构七撑杆张弦梁结构
    结构跨度60 m100 m
    撑杆间距10 m12.5 m
    跨中垂度9 m10 m
    上弦梁矩形钢管
    300 mm×400 mm×12 mm
    矩形钢管
    550 mm×750 mm×16 mm
    撑杆圆钢管ϕ159 mm×6 mm圆钢管ϕ152 mm×8 mm
    下弦索平行钢丝束105×ϕ5 mm平行钢丝束211×ϕ5 mm
    预应力400 MPa预应力550 MPa
    (屈服刚度1370 MPa)(屈服刚度1370 MPa)
    下载: 导出CSV

    表  5   相对位移幅值u0理论公式求解验证

    Table  5   Verification of theoretical formula relative displacement amplitude u0

    结构参数60 m五撑杆
    张弦梁结构
    100 m七撑杆
    张弦梁结构
    粘弹性阻尼器参数组合K=194 kN/m
    C=30 kN·s/m
    K=65 kN/m
    C=20 kN·s/m
    相对位移u0理论解/mm5.2012.71
    相对位移u0有限元解/mm5.1413.15
    相对位移u0相对误差/(%)1.243.51
    下载: 导出CSV

    表  6   最优加速度峰值减振系数汇总

    Table  6   Summary of optimal acceleration peak damping coefficient

    刚度系数
    K/(kN/m)
    Taft波/
    (%)
    Kobe波/
    (%)
    El-
    Centro波/(%)
    Northridge
    波/(%)
    ChiChi
    波/(%)
    白噪声/
    (%)
    10027.18
    19441.2028.9142.5833.5438.9120.83
    20031.47
    40023.6522.5134.2019.4428.0615.43
    80033.2717.9930.6710.2821.5824.54
    200020.84
    下载: 导出CSV

    表  7   人致荷载作用下加速度振动控制效果

    Table  7   Acceleration vibration reduction effect under human-induced load

    阻尼器参数加速度幅值/(m/s2)加速度峰值减振系数/(%)
    原始结构3.3732
    K=194, C=301.863844.75
    K=400, C=1001.950542.18
    K=800, C=2002.332930.84
    K=2000, C=6002.903213.93
    注:刚度系数K/(kN/m);阻尼系数C/(kN·s/m)。
    下载: 导出CSV

    表  8   拱形张弦梁结构加速度振动控制效果

    Table  8   Acceleration vibration reduction effect of arched BSS

    阻尼器参数加速度幅值/(m/s2)加速度峰值减振系数/(%)
    原始结构5.4753
    K=194, C=303.582834.56
    K=400, C=3004.395719.72
    K=800, C=1004.734913.52
    注:刚度系数 K /(kN/m);阻尼系数 C /(kN·s/m)。
    下载: 导出CSV

    表  9   上弦梁跨中位移静力分析结果

    Table  9   Static midspan displacement of beam

    跨度60 m张弦梁结构上弦梁跨中静力位移/mm
    阻尼器参数 预应力400 MPa 预应力750 MPa
    原始结构 +26.18 +195.49
    K=194, C=0 −157.17 +17.38
    K=194, C=30 −157.17 +17.38
    跨度100 m张弦梁结构上弦梁跨中静力位移/mm
    阻尼器参数 预应力550 MPa 预应力720 MPa
    原始结构 −3.52 +185.51
    K=65, C=0 −166.58 +27.01
    K=65, C=20 −166.58 +27.01
    注:刚度系数 K /(kN/m);阻尼系数 C /(kN·s/m)。
    下载: 导出CSV

    表  10   上弦梁跨中应力静力分析结果

    Table  10   Static midspan stress of beam

    跨度60 m张弦梁结构上弦梁跨中应力位移/MPa
    阻尼器参数 预应力400 MPa 预应力750 MPa
    原始结构 102.30 120.53
    K=194, C=0 102.49 82.99
    K=194, C=30 102.48 82.99
    跨度100 m张弦梁结构上弦梁跨中应力/MPa
    阻尼器参数 预应力550 MPa 预应力720 MPa
    原始结构 69.59 83.63
    K=65, C=0 132.67 117.61
    K=65, C=20 132.67 117.61
    注:刚度系数 K /(kN/m);阻尼系数 C /(kN·s/m)。
    下载: 导出CSV

    表  11   下弦索跨中应力静力分析结果

    Table  11   Static midspan stress of string

    跨度60 m张弦梁结构下弦索跨中应力位移/MPa
    阻尼器参数预应力400 MPa预应力750 MPa
    原始结构342.27343.41
    K=194, C=0345.67346.80
    K=194, C=30345.58346.71
    跨度100 m张弦梁结构下弦索跨中应力/MPa
    阻尼器参数预应力550 MPa预应力720 MPa
    原始结构507.21509.72
    K=65, C=0512.40514.85
    K=65, C=20512.38514.83
    注:刚度系数 K /(kN/m);阻尼系数 C /(kN·s/m)。
    下载: 导出CSV
  • [1] 陈志华. 弦支结构体系研究进展[J]. 建筑结构, 2011, 41(12): 24 − 31.

    Chen Zhihua. The state of art of cable-supported structures [J]. Building Structure, 2011, 41(12): 24 − 31. (in Chinese)

    [2] 赵基达, 梁存之. 张弦梁结构的分析与力学性能研究[J]. 建筑科学, 2015, 31(1): 1 − 6.

    Zhao Jida, Liang Cunzhi. Structural analysis and mechanical behavior research of beam string structures [J]. Building Science, 2015, 31(1): 1 − 6. (in Chinese)

    [3] 张志宏, 张明山, 董石麟. 张弦梁结构若干问题的探讨[J]. 工程力学, 2004, 21(6): 26 − 30.

    Zhang Zhihong, Zhang Mingshan, Dong Shilin. Discussion on some problems of beam―string structures [J]. Engineering Mechanics, 2004, 21(6): 26 − 30. (in Chinese)

    [4] 范栋浩, 杜咏, 盛红梅. 高温下张弦梁结构力学特征解析解[J]. 工程力学, 2016, 33(4): 195 − 204. doi: 10.6052/j.issn.1000-4750.2014.09.0797

    Fan Donghao, Du Yong, Sheng Hongmei. Mathematical calculations for the characteristics of beam srting structure in fire [J]. Engineering Mechanics, 2016, 33(4): 195 − 204. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.09.0797

    [5]

    Xue W, Liu S. Linear elastic and limit state solutions of beam string structures by the Ritz-method [J]. Structural Engineering and Mechanics, 2010, 35(1): 67 − 82. doi: 10.12989/sem.2010.35.1.067

    [6] 赵思远, 郭彦林, 张旭乔, 等. 张弦梁平面外弹性稳定性能研究[J]. 工程力学, 2013, 30(12): 49 − 56. doi: 10.6052/j.issn.1000-4750.2012.06.0469

    Zhao Siyuan, Guo Yanlin, Zhang Xuqiao, et al. Out-of-plane elastic buckling behavior of beam string structure [J]. Engineering Mechanics, 2013, 30(12): 49 − 56. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.06.0469

    [7]

    Cai J, Feng J, Jiang C. Development and analysis of a long-span retractable roof structure [J]. Journal of Constructional Steel Research, 2014, 92: 175 − 182. doi: 10.1016/j.jcsr.2013.09.006

    [8] 薛素铎, 凌和海. 粘弹性阻尼器在网架结构减震控制中的优化设置[J]. 建筑结构学报, 2007, 28(4): 51 − 57, 75.

    Xue Suduo, Ling Hehai. Optimum installation of viscoelastic dampers in space frame structures [J]. Journal of Building Structures, 2007, 28(4): 51 − 57, 75. (in Chinese)

    [9]

    Xu J, Xu S, Yuan Z. Probabilistic seismic analysis of single-layer reticulated shell structures controlled by viscoelastic dampers with an effective placement [J]. Engineering Structures, 2020, 222: 1 − 15.

    [10] 金波, 李梓溢, 周旺, 等. 基于改进遗传算法的阻尼器位置与数量优化分析[J]. 湖南大学学报(自然科学版), 2019, 46(11): 114 − 121.

    Jin Bo, Li Ziyi, Zhou Wang, et al. Optimal analysis on location and quantity of dampers based on improved genetic algorithm [J]. Journal of Hunan University (Natural Sciences), 2019, 46(11): 114 − 121. (in Chinese)

    [11] 汤罗生. 附设粘弹性阻尼器的网架结构抗震性能研究[D]. 成都: 西南交通大学, 2009.

    Tang Luosheng. Study on seismic performance of grid structure with viscoelastic dampers [D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese)

    [12] 秦乃兵, 张毅刚, 茹洋. 采用新型阻尼杆的双层柱面网壳结构减震分析与试验研究[J]. 建筑结构学报, 2005, 26(6): 108 − 113.

    Qin Naibing, Zhang Yigang, Ru Yang. Shaking table experimental study on earthquake resistance control of double-layer latticed cylindrical shell with new type damper elements [J]. Journal of Building Structures, 2005, 26(6): 108 − 113. (in Chinese)

    [13]

    Yang Y, Ma H. Optimal topology design of replaceable bar dampers of a reticulated shell based on sensitivity analysis [J]. Earthquake Engineering and Engineering Vibration, 2014, 13(1): 113 − 124. doi: 10.1007/s11803-014-0216-2

    [14]

    Altieri D, Tubaldi E, Patelli E, et al. Assessment of optimal design methods of viscous dampers [J]. Procedia Engineering, 2017, 199: 1152 − 1157. doi: 10.1016/j.proeng.2017.09.286

    [15]

    Palermo M, Silvestri S, Landi L, et al. A “direct five-step procedure” for the preliminary seismic design of buildings with added viscous dampers [J]. Engineering Structures, 2018, 173: 933 − 950. doi: 10.1016/j.engstruct.2018.06.103

    [16]

    Lu Y, Hao G, Han Q, et al. Steel tubular friction damper and vibration reduction effects of double-layer reticulated shells [J]. Journal of Constructional Steel Research, 2020, 169: 1 − 18.

    [17] 王孟鸿, 杨庆山, 赵东拂. 张弦桁架的动力稳定性与振动控制研究[J]. 建筑结构, 2007, 37(6): 79 − 81, 58.

    Wang Menghong, Yang Qingshan, Zhao Dongfu. Dynamic stability and vibration control study of tensioned cable-truss structure [J]. Building Structure, 2007, 37(6): 79 − 81, 58. (in Chinese)

    [18]

    Zhang L, Su M, Zhang C, et al. A design method of viscoelastic damper parameters based on the elastic-plastic response reduction curve [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 149 − 163. doi: 10.1016/j.soildyn.2018.09.050

    [19]

    Xiao Y, Zhou Y, Huang Z. Efficient direct displacement-based seismic design approach for structures with viscoelastic dampers [J]. Structures, 2021, 29: 1699 − 1708. doi: 10.1016/j.istruc.2020.12.067

    [20] 朱丽华, 王健, 于安琪, 等. 基于建筑需求的新型黏滞阻尼器开敞式布置机构研究[J]. 工程力学, 2019, 36(8): 210 − 216, 225. doi: 10.6052/j.issn.1000-4750.2018.09.0519

    Zhu Lihua, Wang Jian, Yu Anqi, et al. A novel viscous damper installation configuration considering architectural requirements [J]. Engineering Mechanics, 2019, 36(8): 210 − 216, 225. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.09.0519

    [21] 李宏男, 李元龙, 黄宙, 等. 新型旋转放大式黏弹性阻尼器性能试验研究[J]. 工程力学, 2021, 38(2): 134 − 145. doi: 10.6052/j.issn.1000-4750.2020.04.0213

    Li Hongnan, Li Yuanlong, Huang Zhou, et al. Experimental study on the properties of a new rotation-magnified viscoelastic damper [J]. Engineering Mechanics, 2021, 38(2): 134 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0213

    [22] 韩庆华, 赵一峰, 芦燕, 等. 人致荷载作用下楼层网架结构舒适度研究[J]. 建筑结构, 2015, 45(16): 35 − 39, 86.

    Han Qinghua, Zhao Yifeng, Lu Yan, et al. Comfort study of floor space truss structure under human-induced loads [J]. Building Structure, 2015, 45(16): 35 − 39, 86. (in Chinese)

  • 期刊类型引用(12)

    1. 李尚斌,江露生,林永峰. 倾转旋翼机悬停状态气动干扰分析. 工程力学. 2024(03): 232-240 . 本站查看
    2. 童晟翔,史志伟,耿玺,王力爽,孙志坤,陈其昌. 组合式仿枫树子飞行器与空中分体技术. 航空学报. 2024(06): 80-95 . 百度学术
    3. 安朝,霍贵玺,孟杨,谢长川,杨超. 翼尖铰接组合式无人机气动建模方法及布局参数影响. 航空学报. 2024(06): 173-188 . 百度学术
    4. 陈树生,贾苜梁,刘衍旭,高正红,向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展. 航空学报. 2024(06): 7-53+2 . 百度学术
    5. 张志涛,谢长川,黄坤慧,杨超,王亚茹. 考虑偏航入流的螺旋桨气动特性及滑流分析. 工程力学. 2024(08): 238-249 . 本站查看
    6. 马晓. 面向飞行控制的无人机建模与仿真研究. 自动化与仪器仪表. 2024(09): 39-42 . 百度学术
    7. 吕海龙,刘燕斌,陈柏屹,何真,贾军. 折叠翼垂直起降飞行器多体动力学建模和控制. 上海交通大学学报. 2024(11): 1772-1782 . 百度学术
    8. 牛中国,梁华,蒋甲利. 基于微秒脉冲激励的飞翼模型等离子体流动控制试验研究. 工程力学. 2023(02): 247-256 . 本站查看
    9. 王宇,祝小平,周洲. 多体飞行器展开过程动力学特性研究. 西北工业大学学报. 2023(03): 490-499 . 百度学术
    10. 张庆才,周春燕. 基于智能模糊PID控制的无人机飞控研究. 机电工程技术. 2023(07): 64-66+163 . 百度学术
    11. 杜万闪,周洲,拜昱,张志林,王科雷. 组合式飞行器多体动力学建模与飞行力学特性. 兵工学报. 2023(08): 2245-2262 . 百度学术
    12. 杨倩,王艳娥,梁艳,司海峰. 基于移动群智感知的多旋翼无人机噪声控制技术. 计算机测量与控制. 2022(10): 162-167 . 百度学术

    其他类型引用(4)

图(21)  /  表(11)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  214
  • PDF下载量:  84
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2021-03-02
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回