VARIABLE UNIVERSE FUZZY PID CONTROL BASED ON ADAPTIVE CONTRACTING-EXPANDING FACTORS
-
摘要: 针对传统变论域模糊PID控制算法(VUFP)伸缩因子无法自适应调整的问题,建立了基于自适应伸缩因子的变论域模糊PID振动控制方法,从而进一步提升振动控制效果。在传统VUFP算法的基础上,将系统误差及误差变化率作为输入,伸缩因子参数作为输出,提出了伸缩因子自适应调整函数;从非零性、对偶性、单调性、正规性、协调性入手,通过理论证明了所提自适应调整函数的合理性;基于VUFP算法,利用系统误差及误差变化率实现了自适应调整函数参数的实时自适应调整,从而避免了VUFP算法中伸缩因子缺乏模糊规则导致控制效果降低的问题。3层框架理论模型和实验结构的振动控制结果表明:所提控制方法能实现函数型伸缩因子参数的自适应调整,针对框架结构加速度、速度及位移的控制效果均优于PID和VUFP控制算法,为建筑结构振动控制提供了一种新的控制算法。
-
关键词:
- 半主动控制 /
- 变论域模糊PID控制 /
- 伸缩因子 /
- 控制算法 /
- 模糊控制
Abstract: Aiming at the problem that the expansion factor of the traditional variable universe fuzzy PID control algorithm (VUFP) cannot be adaptively adjusted, a variable universe fuzzy PID vibration control method based on the adaptive expansion factor is established to further improve the vibration control effect. On the basis of the traditional VUFP algorithm, the system error and error change rate are taken as inputs and the scaling factor parameters are taken as outputs, and an adaptive adjustment function of scaling factor is proposed. From the aspects of non-zero, duality, monotonicity, normality and coordination, the rationality of the proposed adaptive adjustment function is proved theoretically. Based on VUFP algorithm, the real-time adaptive adjustment of the parameters of the adjustment function is realized by using the system error and the error change rate, thus avoiding the problem that the control effect is reduced due to the lacking of fuzzy rules for the expansion factor in VUFP algorithm. The vibration control results of three-story frame model and experimental structure show that the proposed control method can realize the adaptive adjustment of functional expansion factor parameters, and the control effect for acceleration, velocity and displacement of frame structure is better than that of PID and VUFP control algorithms, so the proposed control method provides a new control algorithm for vibration control of building structures. -
-
表 1
α(e(t)) 、α(ec(t)) 的模糊控制规则Table 1 The fuzzy control rules of
α(e(t)) andα(ec(t)) e NB NM NS ZV PS PM PB α(e(t)) B M S Z S M B α(ec(t)) B M S Z S M B 表 2 MR阻尼器参数取值
Table 2 The value of parameters of the MR damper
参数 电压调整
参数c0a/
(N·s·m−1)电压调整
参数c0b/
(N·s·m−1·V−1)等效刚度k0/
(N·m−1)电压调整
参数c4a/
(N·s·m−1)电压调整
参数c4b/
(N·s·m−1·V−1)取值 2100 350 4690 28 300 295 参数 储能器
刚度k4/
(N·m−1)初始
位移y0/m电压调整
参数αa/
(N·m−1)电压调整
参数αb/
(N·m−1·V−1)滞回环控制
参数γ/m−2取值 500 0.143 14 000 69 500 3 630 000 参数 滞回环控制
参数λ/m−2滞回环控制
参数A1滞回环控制
参数l取值 3 630 000 301 2 表 3 结构各层相对位移峰值及控制率
Table 3 The peak values and control rates of the relative displacement of each floor
楼层 无控/mm PID VUFP NEVUFP 位移
峰值/mm控制率/
(%)位移
峰值/mm控制率/
(%)位移
峰值/mm控制率/
(%)1 5.705 1.974 65.40 1.612 71.74 1.463 74.36 2 8.777 3.588 59.12 3.031 65.47 2.804 68.05 3 10.340 4.835 53.24 4.021 61.12 3.528 65.88 -
[1] 王建. 非线性不确定性结构自适应模糊分散控制理论与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. Wang Jian. Decentralized adaptive fuzzy control theory and experiments for nonlinear uncertain structures [D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)
[2] 朱宏平, 沈文爱, 雷鹰, 等. 结构减隔震控制系统性能监测、评估与提升[J]. 工程力学, 2020, 37(1): 1 − 16. doi: 10.6052/j.issn.1000-4750.2019.05.ST06 Zhu Hongping, Shen Wenai, Lei Ying, et al. Performance monitoring, evaluation, and improvement of structural vibration mitigation or isolation systems [J]. Engineering Mechanics, 2020, 37(1): 1 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.ST06
[3] 白荣林, 杨润林, 杜建霞, 等. 结构变刚度/变阻尼控制若干问题的研究[J]. 建筑科学, 2009, 25(7): 46 − 51. doi: 10.3969/j.issn.1002-8528.2009.07.011 Bai Ronglin, Yang Runlin, Du Jianxia, et al. Study on key problems in semiactive structural control by using AVS and AVD [J]. Building Science, 2009, 25(7): 46 − 51. (in Chinese) doi: 10.3969/j.issn.1002-8528.2009.07.011
[4] 杨润林, 闫维明, 周锡元. 结构半主动控制研究中存在的若干问题[J]. 建筑结构学报, 2007, 28(4): 64 − 75. doi: 10.3321/j.issn:1000-6869.2007.04.009 Yang Runlin, Yan Weiming, Zhou Xiyuan. Key problems in semiactive structural control [J]. Journal of Building Structures, 2007, 28(4): 64 − 75. (in Chinese) doi: 10.3321/j.issn:1000-6869.2007.04.009
[5] Erkus B, Abe M, Fujino Y. Investigation of semi-active control for seismic protection of elevated highway bridges [J]. Engineering Structures, 2002, 24(3): 281 − 293. doi: 10.1016/S0141-0296(01)00095-5
[6] 李德仓, 孟建军, 胥如迅, 等. 强风下高速列车滑膜自适应鲁棒H∞控制方法[J]. 铁道学报, 2018, 40(7): 67 − 73. doi: 10.3969/j.issn.1001-8360.2018.07.010 Li Decang, Meng Jianjun, Xu Ruxun, et al. Sliding mode adaptive robust H∞ control method for high-speed train under strong wind conditions [J]. Journal of the China Railway Society, 2018, 40(7): 67 − 73. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.07.010
[7] Dyke S J, Spencer B F, Sain M K, et al. Modeling and control of magnetorheological dampers for seismic response reduction [J]. Smart Materials and Structures, 2015, 5(5): 565 − 575.
[8] 王梁坤, 施卫星, 周颖, 等. 半主动电涡流单摆式调谐质量阻尼器减震性能研究[J]. 建筑结构学报, 2019, 40(6): 184 − 190. Wang Liangkun, Shi Weixing, Zhou Yin, et al. Study on seismic reduction performance of semi-active eddy current pendulum tuned mass damper [J]. Journal of Building Structures, 2019, 40(6): 184 − 190. (in Chinese)
[9] 潘兆东, 谭平, 周福霖. 不确定结构输出反馈H∞保性能鲁棒分散控制研究[J]. 工程力学, 2018, 35(4): 160 − 167. doi: 10.6052/j.issn.1000-4750.2017.01.0032 Pan Zhaodong, Tan Ping, Zhou Fulin. Output feedback H∞ guaranteed cost robust decentralized control for building structure with uncertain parameters [J]. Engineering Mechanics, 2018, 35(4): 160 − 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0032
[10] 王慧萍, 孙利民, 胡晓伦. 基于可变摩擦阻尼力的斜拉索半主动控制算法[J]. 工程力学, 2015, 32(11): 94 − 99. doi: 10.6052/j.issn.1000-4750.2014.04.0336 Wang Huiping, Sun Limin, Hu Xiaolun. Semiactive control strategy study on vibration control of stay cables with variable friction damper force [J]. Engineering Mechanics, 2015, 32(11): 94 − 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0336
[11] 郭佳, 葛楠. 结构振动磁流变阻尼器模态模糊控制算法研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(2): 267 − 272. Guo Jia, Ge Nan. Research on fuzzy modal algorithm for vibration control with magnetorheological damper [J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2020, 52(2): 267 − 272. (in Chinese)
[12] 潘兆东, 刘良坤, 谭平, 等. 大型结构自适应学习率RBF神经网络滑模分散控制研究[J]. 工程力学, 2019, 36(9): 120 − 127. doi: 10.6052/j.issn.1000-4750.2018.07.0429 Pan Zhaodong, Liu Liangkun, Tan Ping, et al. Research on sliding mode decentralized control based on adaptive learning rate RBF neural network for large-scale engineering structures [J]. Engineering Mechanics, 2019, 36(9): 120 − 127. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0429
[13] Kim H S, Roschke P N. Design of fuzzy logic controller for smart base isolation system using genetic algorithm [J]. Engineering Structures, 2006, 28(1): 84 − 96. doi: 10.1016/j.engstruct.2005.07.006
[14] 马涌泉, 邱洪兴. 一种对高层建筑振动半主动控制的新策略[J]. 中国石油大学学报(自然科学版), 2014, 38(6): 140 − 147. Ma Yongquan, Qiu Hongxing. New semi-active control strategy for vibration suppression of high-rise building [J]. Journal of China University of Petroleum (Natural Science Edition), 2014, 38(6): 140 − 147. (in Chinese)
[15] 宁响亮, 谭平, 周福霖. 公路桥梁振动控制的变论域自适应模糊控制算法[J]. 振动工程学报, 2009, 22(3): 262 − 267. doi: 10.3969/j.issn.1004-4523.2009.03.008 Ning Xiangliang, Tan Ping, Zhou Fulin. Vibration control of highway bridge using variable universe adaptive fuzzy control algorithm [J]. Journal of Vibration Engineering, 2009, 22(3): 262 − 267. (in Chinese) doi: 10.3969/j.issn.1004-4523.2009.03.008
[16] 许睿, 李东旭. 柔性太阳能帆板振动变论域自适应模糊控制[J]. 上海航天, 2012, 29(6): 11 − 15. doi: 10.3969/j.issn.1006-1630.2012.06.004 Xu Rui, Li Dongxu. Vibration control of flexible solar panel based on variable universe adaptive fuzzy control [J]. Aerospace Shanghai, 2012, 29(6): 11 − 15. (in Chinese) doi: 10.3969/j.issn.1006-1630.2012.06.004
[17] Li H X. Adaptive fuzzy controllers based on variable universe [J]. Science in China, 1999, 42(1): 10 − 20. doi: 10.1007/BF02917053
[18] Cui B X, Yang J P, Fang B. New type of adaptive fuzzy controllers based on variable universe in application of traffic signal control [J]. Journal of System Simulation, 2007, 19(2): 380 − 383.
[19] Gong X F, Li H X, Deng G N. Variable universe adaptive fuzzy control on the triple inverted pendulum and choosing contraction-expansion factor [C]. Shanghai: International Conference on Artificial Intelligence and Computational Intelligence, 2009, 12: 63 − 67.
[20] Pang H, Liu F, Liu X. Enhanced variable universe fuzzy control for vehicle semi-active suspension systems [J]. Journal of Intelligent and Fuzzy Systems, 2016, 31(6): 2999 − 3006. doi: 10.3233/JIFS-169184
[21] Zhao Y T, Wang J, Xie X L, et al. Variable universe fuzzy control based on multilayer ant colony algorithm [J]. Pattern Recognition and Artificial Intelligence, 2009, 22(5): 794 − 798.
[22] 陶永华. 新型PID控制及其应用: 第一讲 PID控制原理和自整定策略[J]. 工业仪表及自动化装置, 1997, 4: 60 − 64. Tao Yonghua. New PID control and application I: PID control theory and auto-adjustment strategy [J]. Industrial Instrumentation and Automation, 1997, 4: 60 − 64. (in Chinese)
[23] 杨智, 朱海锋, 黄以华. PID控制器设计与参数整定方法综述[J]. 化工自动化及仪表, 2005, 32(5): 1 − 7. doi: 10.3969/j.issn.1000-3932.2005.05.001 Yang Zhi, Zhu Haifeng, Huang Yihua. Recent studies of PID design and parameter tuning method [J]. Control and Instruments in Chemical Industry, 2005, 32(5): 1 − 7. (in Chinese) doi: 10.3969/j.issn.1000-3932.2005.05.001
[24] 王威, 杨平. 智能PID控制方法的研究现状及应用展望[J]. 自动化仪表, 2008, 29(10): 1 − 3. doi: 10.3969/j.issn.1000-0380.2008.10.001 Wang Wei, Yang Ping. Intelligent PID control of the status and the application of prospect [J]. Process Automation Instrumentation, 2008, 29(10): 1 − 3. (in Chinese) doi: 10.3969/j.issn.1000-0380.2008.10.001
[25] 李洪兴, 苗志宏, 王加银, 等. 四级倒立摆的变论域自适应模糊控制[J]. 中国科学: 技术科学, 2002, 32(1): 65 − 75. Li Hongxing, Miao Zhihong, Wang Jiayin, et al. Adaptive fuzzy control based on variable universe for four-stage inverted pendulum [J]. Science in China (Series E), 2002, 32(1): 65 − 75. (in Chinese)
[26] 朱岩, 郭军平. 变论域自适应模糊PID方法的研究与仿真[J]. 空军工程大学学报(自然科学版), 2005, 6(5): 11 − 13. Zhu Yan, Guo Junping. The study and simulation of fuzzy PID based on mutative field [J]. Journal of Air Force Engineering University (Natural Science Edition), 2005, 6(5): 11 − 13. (in Chinese)
[27] Zeng W, Jiang Q, Xie J, et al. A functional variable universe fuzzy PID controller for load following operation of PWR with the multiple model [J]. Annals of Nuclear Energy, 2020, 140: 21 − 35.
[28] 邵诚, 董希文, 王晓芳. 变论域模糊控制器伸缩因子的选择方法[J]. 信息与控制, 2010, 39(5): 536 − 541. Shao Cheng, Dong Xiwen, Wang Xiaofang. Selection method of the contraction-expansion factor of variable universe fuzzy controller [J]. Information and Control, 2010, 39(5): 536 − 541. (in Chinese)
[29] Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological dampers [J]. Journal of Engineering Mechanics-ASCE, 1997, 123(3): 230 − 238. doi: 10.1061/(ASCE)0733-9399(1997)123:3(230)
[30] 孙跃光, 林怀蔚, 周华茂, 等. 基于临界比例度法整定PID控制器参数的仿真研究[J]. 现代电子技术, 2012, 35(8): 192 − 194. doi: 10.3969/j.issn.1004-373X.2012.08.058 Sun Yueguang, Lin Huaiwei, Zhou Huamao, et al. Simulation study on setting of PID controller parameters according to critical proportioning method [J]. Modern Electronic Technique, 2012, 35(8): 192 − 194. (in Chinese) doi: 10.3969/j.issn.1004-373X.2012.08.058
[31] 赵春锋, 孙兴朋, 王东兴. 基于MATLAB/Simulink下加热炉传递函数的PID仿真试验[J]. 节能, 2010, 29(7): 20 − 22. doi: 10.3969/j.issn.1004-7948.2010.07.006 Zhao Chunfeng, Sun Xingpeng, Wang Dongxing. Furnace transfer function's PID based on MATLAB/Simu1ink simulation [J]. Energy Conservation, 2010, 29(7): 20 − 22. (in Chinese) doi: 10.3969/j.issn.1004-7948.2010.07.006
-
期刊类型引用(15)
1. 张海燕,陈海标,吴波,李梦圆. 纤维网增强地聚物砂浆加固双向板的抗弯性能. 华南理工大学学报(自然科学版). 2025(02): 115-123 . 百度学术
2. 钟正强,刘珺,郭凯军,陈子慕. 端锚CFRP网格U型箍加固RC箱梁抗弯性能试验. 建筑科学与工程学报. 2025(02): 93-100 . 百度学术
3. 杨雨峤,朱健. 纤维编织网增强砂浆加固泵站梁抗剪性能的数值研究. 水利技术监督. 2024(02): 205-210 . 百度学术
4. 石姗姗,吕航宇,吕超雨,苏智博,孙直. 随机多孔碳纤维纸的非线性面外压缩本构模型. 工程力学. 2023(01): 249-256 . 本站查看
5. 王博,王媛媛,王征鹏,张军雷,王天松. CFRP网格-聚合物水泥砂浆加固RC梁抗剪承载力计算方法. 复合材料学报. 2023(02): 990-1003 . 百度学术
6. 刘决丁,范向前,叶宇霄,葛菲. 基于解析方法的FRP增强混凝土梁失稳前断裂过程分析. 工程力学. 2023(10): 129-140 . 本站查看
7. 王青. 纤维网格增强超高性能混凝土加固钢筋混凝土梁受剪性能试验研究. 菏泽学院学报. 2023(05): 65-71 . 百度学术
8. 吴小宾,陈鹏,高峰. 基于加固效费比的砌体结构抗震加固方案优选方法研究. 工程力学. 2022(05): 167-176 . 本站查看
9. 郭莉英,邓明科,马钰人,张雨顺,张伟. 纤维网格高延性混凝土加固RC柱抗剪性能试验研究. 工程力学. 2022(06): 43-54 . 本站查看
10. 陈军锋,刘孙文,周哲,赵超,陈渊. 玄武岩纤维织物增强砂浆薄板抗弯性能试验研究. 四川建材. 2022(10): 24-25 . 百度学术
11. 邓明科,宋诗飞,张敏,马福栋,陈尚城,张阳玺. 高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算. 工程力学. 2021(09): 36-44+63 . 本站查看
12. 张童,雷真,朱争光,吴亚玲. 地震作用下纤维编织网增强钢筋混凝土柱的抗震性能分析. 地震工程学报. 2020(01): 57-62+72 . 百度学术
13. 刘岩,叶涛萍,曹万林. 地聚物混凝土结构研究与发展. 自然灾害学报. 2020(04): 8-19 . 百度学术
14. 张劲泉,李鹏飞,韦韩,王仙. 注浆加固预应力混凝土空心板梁抗剪性能试验研究. 工程力学. 2020(S1): 32-41 . 本站查看
15. 邓明科,郭莉英,李睿喆,陈佳莉. 高延性混凝土加固钢筋混凝土梁抗震性能试验研究. 工程力学. 2020(11): 47-57 . 本站查看
其他类型引用(13)