Processing math: 100%

考虑粘结滑移的冻融损伤纤维梁柱模型研究

张艺欣, 郑山锁, 荣先亮, 王卓涵, 董立国

张艺欣, 郑山锁, 荣先亮, 王卓涵, 董立国. 考虑粘结滑移的冻融损伤纤维梁柱模型研究[J]. 工程力学, 2020, 37(9): 208-216. DOI: 10.6052/j.issn.1000-4750.2019.11.0657
引用本文: 张艺欣, 郑山锁, 荣先亮, 王卓涵, 董立国. 考虑粘结滑移的冻融损伤纤维梁柱模型研究[J]. 工程力学, 2020, 37(9): 208-216. DOI: 10.6052/j.issn.1000-4750.2019.11.0657
ZHANG Yi-xin, ZHENG Shan-suo, RONG Xian-liang, WANG Zhuo-han, DONG Li-guo. RESEARCH ON FREEZE-THAW DAMAGE MODEL OF FIBER BEAM-COLUMN CONSIDERING REINFORCEMENT SLIP EFFECT[J]. Engineering Mechanics, 2020, 37(9): 208-216. DOI: 10.6052/j.issn.1000-4750.2019.11.0657
Citation: ZHANG Yi-xin, ZHENG Shan-suo, RONG Xian-liang, WANG Zhuo-han, DONG Li-guo. RESEARCH ON FREEZE-THAW DAMAGE MODEL OF FIBER BEAM-COLUMN CONSIDERING REINFORCEMENT SLIP EFFECT[J]. Engineering Mechanics, 2020, 37(9): 208-216. DOI: 10.6052/j.issn.1000-4750.2019.11.0657

考虑粘结滑移的冻融损伤纤维梁柱模型研究

基金项目: 国家重点研发计划课题项目(2019YFC1509302);国家自然科学基金项目(51678475);西安市科技计划项目(2019113813CXSF016SF026)
详细信息
    作者简介:

    张艺欣(1991−),女,河南人,讲师,博士,主要从事结构抗震研究(Email: zyx19910619@126.com)

    荣先亮(1993−),男,安徽人,硕士生,主要从事结构抗震研究(Email: rxl021@126.com)

    王卓涵(1995−),男,广东人,硕士生,主要从事结构抗震研究(Email: wangzhuohan1994@163.com)

    董立国(1990−),男,山西人,博士生,主要从事结构抗震研究(Email: dlg_15@163.com)

    通讯作者:

    郑山锁(1960−),男,陕西人,教授,工学博士,主要从事结构工程与工程抗震研究(Email: zhengshansuo@263.net)

  • 中图分类号: TU375.4

RESEARCH ON FREEZE-THAW DAMAGE MODEL OF FIBER BEAM-COLUMN CONSIDERING REINFORCEMENT SLIP EFFECT

  • 摘要: 伸入梁柱节点以及柱与基础交界处纵向受力钢筋的粘结滑移效应会显著影响构件的侧向变形。为准确评估冻融损伤后钢筋混凝土(Reinforced Concrete, RC)柱的抗震性能,在考虑冻融损伤不均匀分布的纤维模型基础上,以锚固区的粘结滑移效应为研究对象,首先基于拉拔试验建立可考虑冻融损伤分布的粘结强度退化规律,进而根据简化粘结应力分布假设,通过建立控制方程进行理论推导得到冻融损伤粘结滑移计算方法,并与冻融钢筋混凝土拉拔试验数据进行了对比验证。进而基于有限元分析软件OpenSEES,将该文模型嵌套于零长度截面单元中,提出可综合考虑冻融不均匀损伤与粘结滑移效应的纤维梁柱模型,根据6榀冻融RC柱拟静力加载试验数据进行了验证,并与仅考虑冻融损伤的纤维模型进行了对比。结果表明:与纤维模型计算结果相比,采用该文模型计算所得滞回曲线与试验结果吻合更好,在承载力、极限位移和累积耗能等方面的计算误差较小,表明所建模型可更为准确地反映冻融损伤后RC柱的地震响应。
    Abstract: The reinforcement slip in the beam-column joints or column footings can make a significant contribution to the total lateral displacement of reinforced concrete members. In order to accurately evaluate the seismic performance of reinforced concrete (RC) with freeze-thaw damage, the reinforcement slip effect is taken into consideration in this study based on the framework of the fiber model accounting for the uneven distribution of freeze-thaw damage. Firstly, the bond strength degradation model with the consideration of the distribution of freeze-thaw damage is built according to the bar pull-out test data. An analytical procedure is proposed for the prediction of reinforcement slip in the frozen-thawed anchorage area based on the assumption of simplified bond stress distribution along the bar and on the governing equations. The model is validated by comparing the data come from frozen-thawed bar pullout experiments. Then the proposed model is implemented to the zero-length section using the finite element software OpenSEES for formulating the modelling method for RC columns considering the uneven distribution of freeze-thaw damage and reinforcement slip effects. Pseudo-static test data from column specimens subjected to freeze-thaw cycles are used to validate the proposed column model and previous fiber model. The research results show that comparing with the fiber modelling results, the calculated hysteretic curves through using the proposed column model are closer to that of the test results, and that the strength errors, the ultimate displacement errors, and accumulated energy errors indicated that the proposed column model can accurately simulate the seismic response of RC column with freeze-thaw damage.
  • 图  1   RC构件端部纵筋滑移变形示意图

    Figure  1.   Schematic diagram of reinforcement slip at the end of RC members

    图  2   Rτd0的回归公式

    Figure  2.   The regression formula of τd0 andR

    图  3   纵筋滑移模型

    Figure  3.   Reinforcement slip model

    图  4   不同荷载值下钢筋应力分布对比图

    Figure  4.   Comparison of the distribution of steel stress under different loads

    图  5   有限元模型

    Figure  5.   Finite element model

    图  6   试件尺寸及配筋 /mm

    Figure  6.   Geometry and configuration of column specimens

    图  7   人工气候实验室[20]

    Figure  7.   Details of environmental chamber

    图  8   RC柱试验实测力位移曲线与数值模拟曲线

    Figure  8.   Force-displacement responses of experimental results and simulated results

    图  9   锚固长度随冻融循环次数变化规律

    Figure  9.   Relationship between anchorage length and numbers of freeze-thaw cycles

    表  1   试件设计与有限元计算参数

    Table  1   Parameters of specimens and finite element analysis

    试件
    编号
    轴压比
    n
    轴压力/
    kN
    冻融循环
    次数N
    混凝土
    强度
    fc/MPa
    钢筋屈服
    强度
    fy /MPa
    屈服
    滑移量
    sy /mm
    极限
    滑移量
    su /mm
    Z-C10.18300.6041.863730.292.53
    Z-C20.18300.610041.863730.302.56
    Z-C30.18300.620041.863730.323.01
    Z-C40.18300.630041.863730.365.07
    Z-C50.24400.320041.863730.323.01
    Z-C60.30486.820041.863730.323.01
    注:表中fcfy分别代表混凝土轴心抗压强度与钢筋屈服强度实测值。
    下载: 导出CSV

    表  2   不同模拟方法滞回曲线模拟误差

    Table  2   Errors between experimental tests and simulated results

    试件编号纤维模型本文模型
    峰值荷载
    误差Ep/(%)
    极限位移
    误差Eu/(%)
    荷载误差
    Ef/(%)
    耗能误差
    Ee/(%)
    峰值荷载
    误差Ep/(%)
    极限位移
    误差Eu/(%)
    荷载误差
    Ef/(%)
    耗能误差
    Ee/(%)
    Z-C1 1.60 40.00 7.60 −15.60 8.10 −4.40 11.10 17.00
    Z-C2 −7.80 19.00 11.30 −25.50 −5.30 3.30 8.30 9.90
    Z-C3 −10.80 20.30 11.80 −35.30 −1.80 −11.20 8.00 0.90
    Z-C4 −4.10 5.30 10.30 −37.90 3.90 −18.90 9.30 5.10
    Z-C5 −1.20 28.80 7.70 −14.50 7.90 −2.90 9.60 13.80
    Z-C6 −7.20 18.40 8.90 −7.60 2.60 −21.10 9.10 21.80
    绝对平均值 5.45 21.95 9.60 22.73 4.93 10.31 9.23 11.42
    注:由于计算结果正负不具有一致性,故对各RC柱试件的计算结果取绝对值后再进行平均,可更为准确地反映计算误差,即绝对平均值。
    下载: 导出CSV
  • [1]

    Popov E P. Bond and anchorage of reinforcing bars under cyclic loading [J]. ACI Journal, 1984, 81(4): 340 − 349.

    [2]

    Saatciglu M, Alsiwat J M, Ozcebe G. Hysteretic behavior of anchorage slip in R/C members [J]. Journal of Structural Engineering, 1992, 118(9): 2439 − 2458. doi: 10.1061/(ASCE)0733-9445(1992)118:9(2439)

    [3]

    Sezen H, Moehle J P. Seismic tests of concrete columns with light transverse reinforcement [J]. ACI Structural Journal, 2006, 103(6): 842.

    [4]

    Fagerlund G, Somerville G, Jeppson J. Manual for assessing concrete structures affected by frost [J]. Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 2001.

    [5]

    Hanjari K Z, Utgenannt P, Lundgren K. Experimental study of the material and bond properties of frost-damaged concrete [J]. Cement and Concrete Research, 2011, 41(3): 244 − 254. doi: 10.1016/j.cemconres.2010.11.007

    [6]

    Petersen L, Lohaus L, Polak M A. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements [J]. ACI Materials Journal, 2007, 104(4): 369.

    [7] 冀晓东. 冻融后混凝土力学性能及钢筋混凝土粘结性能的研究 [D]. 大连: 大连理工大学, 2007.

    Ji Xiaodong. The experimental study and theoretical analysis on the mechanical performance of concrete and bond behavior between concrete and steel bar after freezing and thawing [D]. Dalian: Dalian University of Technology, 2007. (in Chinese)

    [8]

    Molero M, Aparicio S, Al-Assadi G, et al. Evaluation of freeze–thaw damage in concrete by ultrasonic imaging [J]. Ndt & E International, 2012, 52(4): 86 − 94.

    [9] 张艺欣, 郑山锁, 裴培, 等. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2): 78 − 86. doi: 10.6052/j.issn.1000-4750.2017.11.0791

    Zhang Yixin, Zheng Shansuo, Pei Pei, et al. Research on the modeling method of reinforced concrete subjected to freeze-thaw damage [J]. Engineering Mechanics, 2019, 36(2): 78 − 86. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0791

    [10] 孙治国, 陈灿, 司炳君, 等. 考虑非线性剪切效应的RC桥墩抗震分析模型[J]. 工程力学, 2015, 32(5): 28 − 36.

    Sun Zhiguo, Chen Can, Si Bingjun, et al. Seismic analysis model considering nonlinear shear effect for RC bridge piers [J]. Engineering Mechanics, 2015, 32(5): 28 − 36. (in Chinese)

    [11]

    Alsiwat J M, Saatcioglu M. Reinforcement anchorage slip under monotonic loading [J]. Journal of Structural Engineering, 1992, 118(9): 2421 − 2438. doi: 10.1061/(ASCE)0733-9445(1992)118:9(2421)

    [12]

    Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns [J]. ACI Structural Journal, 2008, 105(3): 280 − 289.

    [13]

    Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures [J]. ACI Structural Journal, 2007, 104(2): 133.

    [14] 杨红, 徐海英, 王志军. 考虑柱底纵筋滑移的纤维模型及框架地震反应分析[J]. 建筑结构学报, 2009, 30(4): 130 − 137. doi: 10.3321/j.issn:1000-6869.2009.04.016

    Yang Hong, Xu Haiying, Wang Zhijun. Seismic response analysis of RC frame based on fiber model considering bar slippage at column bottom section [J]. Journal of Building Structures, 2009, 30(4): 130 − 137. (in Chinese) doi: 10.3321/j.issn:1000-6869.2009.04.016

    [15]

    Melo J, Fernandes C, Varum H, et al. Numerical modelling of the cyclic behaviour of RC elements built with plain reinforcing bars [J]. Engineering Structures, 2011, 33(2): 273 − 286. doi: 10.1016/j.engstruct.2010.11.005

    [16]

    Jeon J, Lowes L N, Desroches R, et al. Fragility curves for non-ductile reinforced concrete frames that exhibit different component response mechanisms [J]. Engineering Structures, 2015: 127 − 143.

    [17] 孟祥鑫. 冻融循环后钢筋与再生混凝土粘结性能试验研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Meng Xiangxin. Experimental study on bond behavior between steel rebars and recycled concrete after freeze-thaw cycles [D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)

    [18]

    Yassin M H M. Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads [M]. Berkeley: University of California, 1994.

    [19]

    Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804 − 1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)

    [20] 张艺欣, 郑山锁, 裴培, 等. 冻融循环作用下钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2020, 41(6): 75 − 82.

    Zhang Yixin, Zheng Shansuo, Pei Pei, et al. Experimental investigation on the seismic behavior of reinforced concrete columns subjected to freeze-thaw cycles [J]. Journal of Building Structures, 2020, 41(6): 75 − 82. (in Chinese)

    [21]

    Berry M P, Eberhard M O. Performance modeling strategies for modern reinforced concrete bridge columns [R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2007.

    [22] 过镇海, 时旭东. 钢筋混凝土原理和分析 [M]. 北京: 清华大学出版社, 2012.

    Guo Zhenhai, Shi Xudong. Reinforced concrete theory and analyse [M]. Beijing: Tsinghua University Press, 2012. (in Chinese)

    [23]

    Chung L, Cho S, Kim J J, et al. Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars [J]. Engineering Structures, 2004, 26(8): 1013 − 1026. doi: 10.1016/j.engstruct.2004.01.008

    [24]

    Sajedi S, Huang Q. Probabilistic prediction model for average bond strength at steel–concrete interface considering corrosion effect [J]. Engineering Structures, 2015, 99: 120 − 131. doi: 10.1016/j.engstruct.2015.04.036

  • 期刊类型引用(4)

    1. 王朝振,刘银涛,孙建鹏,周鹏,孙文武,张家驹. 微分法在有限元分析中的应用. 城市道桥与防洪. 2021(01): 172-175+18-19 . 百度学术
    2. 赵云,丁敏,韩盛柏,曹琼琼,蒋秀根. 考虑压-弯-扭耦合作用的开口截面杆件非线性静力模型. 中国农业大学学报. 2021(03): 115-123 . 百度学术
    3. 丁敏,石家华,王斌泰,王宏志,邓婷,罗双,蒋秀根. 解析型几何非线性圆拱单元. 工程力学. 2021(07): 1-8+29 . 本站查看
    4. 罗爱玲,景运革. 有限元法在扭转杆计算中的应用. 机电工程技术. 2021(11): 125-128 . 百度学术

    其他类型引用(0)

图(9)  /  表(2)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  109
  • PDF下载量:  67
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-11-05
  • 修回日期:  2020-04-18
  • 网络出版日期:  2020-06-01
  • 刊出日期:  2020-09-06

目录

    /

    返回文章
    返回