RESEARCH ON NSRFG-BASED LES SIMULATION FOR STANDARD WIND TERRAINS
-
摘要: 大涡模拟中入流湍流的准确模拟,是计算风工程领域当前研究的热点;准确定义与各类地貌大气边界层湍流特征相符的入流边界条件,是进行建筑结构风效应研究的前提(也是当前研究的难题)。该文在新提出的以湍流合成法为基础的LES入流湍流生成技术—NSRFG方法上,研究了数学模型中若干参数的适当取值问题。通过数值分析对采样频率间距Δƒ、引入的时间尺度因子
τ0 和空间尺度因子θ、衰减系数cj 及调谐因子γj 等重要参数进行敏感性研究,分析了上述参数的取值对所生成湍流脉动风速功率谱、均方值和空间相关性等模拟结果的影响;在此基础上建议了一套与中国规范四类标准地貌风场相对应的参数表,从而建立基于该方法的“标准数值风场模型”;通过实例对四类标准地貌边界层湍流风场进行数值模拟和平衡态检验。研究表明:上述关键参数的赋值对采用NSRFG方法进行大气边界层湍流风场的重构影响显著,该文基于NSRFG方法所建议的标准地貌数值风场模型,对研究者采用LES进行结构风工程的数值模拟研究具有一定的参考价值。Abstract: Accurately simulating inflow turbulence for large eddy simulation (LES) is a hot topic in the field of computational wind engineering. Defining appropriate inflow boundary conditions in accordance with the turbulence characteristics of various atmospheric boundary layers (ABLs) is a prerequisite and indeed a great challenge in numerical research of wind effects on building structures at current stage. Based on the newly proposed LES inflow turbulence generation technology-NSRFG method, which belongs to the category of the turbulence synthesis method, the appropriate values of several parameters in the mathematical model were systematically studied. Detailed parameter sensitivity analyses were conducted to investigate several key parameters, including the sampling frequency intervals Δƒ, the introduced time scale factorτ0 , the introduced spatial scale factor θ, the decay coefficientcj and the tuning factorγj , on the simulated turbulent fluctuating wind velocity spectra, the RMS values as well as the spatial correlations. Based on it, a serials of model parameters corresponding to four typical standard wind terrains defined in Chinese building code were then proposed in order to build a ‘standard numerical wind terrain model’. Numerical simulations and equilibrium state verifications for those standard wind fields were subsequently performed. The results showed that key parameters had significant impacts on the numerical reconstructions of the turbulent wind fields by employing NSRFG method, and the proposed standard numerical wind terrain models would be referential for similar LES research of building structures. -
-
表 1 基本数值模型湍流风场参数设置
Table 1 Parameters of the turbulent wind flow for the basic numerical model
参数 定义 风场类别 C类地貌 平均速度 Uav=Uref(zzref)αUref=11.1 m/s,zref=0.61 m,α=0.22 湍流强度 Iu(z)=I10(zz10)−αIv(z)=Iu(z)σvσu,Iw(z)=Iu(z)σwσu 湍流积分尺度 Lu(z)=300(z300)0.46+0.074lnz0Lv(z)=0.5(σvσu)3Lu(z),Lw(z)=0.5(σwσu)3Lu(z) 注:根据欧洲规范(ESDU 85020),表中部分参数计算如下:σvσu=1−0.22cos4(π2zh),σwσu=1−0.45cos4(π2zh),h=u∗6f,u∗为摩擦速度,z0=0.7 m,f=2Ωsinφ,Ω=72.9×10−6,φ=23.1670(地区纬度)。 表 2 不同采样频率间隔的脉动风速均方根比较
Table 2 Comparisons of the RMS values of the fluctuating velocities with different frequency intervals
采样频率间隔Δƒ 空间三维脉动风速均方根 σu σv σw 5 (N=50) 1.265 1.021 0.691 2.5 (N=100) 1.322 1.016 0.692 1.25 (N=200) 1.324 1.016 0.692 0.50 (N=500) 1.327 1.016 0.692 0.25 (N=1000) 1.329 1.016 0.692 0.15 (N=1666) 1.334 1.018 0.692 目标值 1.347 1.051 0.741 表 3 时间尺度统计特性比较
Table 3 Comparison of time scale statistics
间尺度因子τ0 空间三维时间尺度/s Tu Tv Tw 0.50 0.0306±0.0012 0.0084±0.0001 0.0032±0.0001 0.80 0.0481±0.0010 0.0134±0.0002 0.0051±0.0001 0.96 0.0576±0.0007 0.0161±0.0003 0.0060±0.0001 1.00 0.0593±0.0048 0.0167±0.0005 0.0063±0.0001 1.20 0.0725±0.0018 0.0200±0.0004 0.0076±0.0001 1.50 0.1001±0.0128 0.0259±0.0011 0.0096±0.0003 目标值 0.0587 0.0139 0.0049 表 4 不同空间尺度因子下的脉动风速均方根比较
Table 4 Comparison of the RMS values of the fluctuating velocities with different spatial scale factors
空间尺度因子θ 空间三维脉动风速均方根 σu σv σw 0.4 1.309 0.987 0.649 0.6 1.318 1.002 0.671 0.8 1.324 1.010 0.684 1.0 1.327 1.016 0.692 1.5 1.331 1.024 0.704 2.0 1.335 1.028 0.710 2.5 1.336 1.031 0.714 表 5 基于NSRFG方法的四种标准地貌参数建议值
Table 5 Suggested parameters in the NSRFG methods for four standard wind terrain categories
地貌类别 NSRFG方法中参数取值 c1 c2 c3 γ1 γ2 γ3 A类地貌 10 15 15 3.36 2.98 2.98 B类地貌 10 12 12 2.25 2.10 2.10 C类地貌 10 12 12 2.46 2.35 2.20 D类地貌 10 12 12 2.85 2.60 2.52 表 6 LES计算格式和参数设置
Table 6 Calculation formats and parameters in the LES
计算格式 参数设置 压力离散格式 二阶迎风 时间离散格式 二阶隐式 动量方程离散格式 有界中心差分 压力、速度耦合 PISO算法 亚格子模型 壁面自适应局部涡粘模型(WALE) 表 7 四类地貌顺风向脉动风速均方值与目标值的比较
Table 7 Comparison between RMS values of along-wind velocities for the four standard wind terrain categories and target values
风场类别 目标值σu 模拟值σu 相对误差/(%) A类地貌 0.940 0.910 3.2 B类地貌 1.004 0.960 4.4 C类地貌 1.347 1.307 3.0 D类地貌 1.811 1.732 4.4 -
[1] Bazdidi-Tehrani F, Kiamansouri M, Kiamansouri M, et al. Inflow turbulence generation techniques for large eddy simulation of flow and dispersion around a model building in a turbulent atmospheric boundary layer [J]. Journal of Building Performance Simulation, 2016, 9(6): 680 − 698. doi: 10.1080/19401493.2016.1196729
[2] Blocken B. 50 years of computational wind engineering: Past, present and future [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 129: 69 − 102. doi: 10.1016/j.jweia.2014.03.008
[3] Janssen W D, Blocken B, van Hooff T. Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study [J]. Building and Environment, 2013, 59: 547 − 562. doi: 10.1016/j.buildenv.2012.10.012
[4] Daniels S J, Castro I P, Xie Z. Peak loading and surface pressure fluctuations of a tall model building [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 120: 19 − 28. doi: 10.1016/j.jweia.2013.06.014
[5] 李启, 杨庆山, 朱伟亮. 湍流入口条件下建筑非定常风场的大涡模拟[J]. 工程力学, 2012, 29(12): 274 − 280. doi: 10.6052/j.issn.1000-4750.2011.05.0290 Li Qi, Yang Qingshan, Zhu Weiliang. Large eddy simulation of unsteady wind field around building using turbulent inflow [J]. Engineering Mechanics, 2012, 29(12): 274 − 280. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.05.0290
[6] Pamiès M, Weiss P, Garnier E, et al. Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows [J]. Physics of Fluids, 2009, 21(4): 1 − 15. doi: 10.1063/1.3103881
[7] 周桐, 杨庆山, 闫渤文, 等. 大气边界层大涡模拟入口湍流生成方法综述[J]. 工程力学, 2019, 30(1): 105 − 116. Zhou Tong, Yang Qingshan, Yan Bowen, et al. Review of inflow turbulence generation methods with large eddy simulation for atmospheric boundary layer [J]. Engineering Mechanics, 2019, 30(1): 105 − 116. (in Chinese)
[8] Kraichnan R H. Diffusion by a random velocity field [J]. Physics of Fluids, 1970, 13(1): 22 − 31. doi: 10.1063/1.1692799
[9] Smirnov A, Shi S, Celik I. Random flow generation technique for large eddy simulations and particle-dynamics modeling [J]. Journal of Fluids Engineering, 2001, 123: 359 − 371. doi: 10.1115/1.1369598
[10] Huang S H, Li Q S, Wu J R. A general inflow turbulence generator for large eddy simulation [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98: 600 − 617. doi: 10.1016/j.jweia.2010.06.002
[11] Castro H G, Paz R R. A time and space correlated turbulence synthesis method for large eddy simulations [J]. Journal of Computational Physics, 2013, 235: 742 − 763. doi: 10.1016/j.jcp.2012.10.035
[12] Aboshosha H, Elshaer A, Bitsuamlak G T, et al. Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 142: 198 − 216. doi: 10.1016/j.jweia.2015.04.004
[13] Yu Y, Yang Y, Xie Z. A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building [J]. Building and Environment, 2018, 138: 300 − 313. doi: 10.1016/j.buildenv.2018.03.059
[14] GB 50009―2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012. GB 50009―2012, Load code for the design of building structures [S]. Beijing: China Architecture Industry Press, 2012. (in Chinese)
[15] Hémon P, Santi F. Simulation of a spatially correlated turbulent velocity field using biorthogonal decomposition [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(1): 21 − 29. doi: 10.1016/j.jweia.2006.04.003
[16] Batten P, Goldberg U, Chakravarthy S. Interfacing statistical turbulence closures with large-eddy simulation [J]. AIAA Journal, 2004, 42(3): 485 − 492. doi: 10.2514/1.3496
[17] Yang Y, Xie Z N, Gu M. Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST <italic>k</italic>-<italic>ω</italic> model [J]. Wind and Structures, 2017, 5(24): 465 − 480.
[18] Dhamankar N S, Blaisdell G A, Lyrintzis A S. Overview of turbulent inflow boundary conditions for large-eddy simulations [J]. AIAA Journal, 2017, 56(35): 1 − 18.
[19] Vasaturo R, Kalkman I, Blocken B, et al. Large eddy simulation of the neutral atmospheric boundary layer: Performance evaluation of three inflow methods for terrains with different roughness [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 173: 241 − 261. doi: 10.1016/j.jweia.2017.11.025
-
期刊类型引用(14)
1. 谢军,梁金晓,赵国帆,郭飞. 基于天牛须算法的钢筋混凝土框架结构优化. 河北建筑工程学院学报. 2024(01): 22-27 . 百度学术
2. 徐龙河,鞠子薇,江浩. 自复位支撑钢框架抗震性能评估与损伤演化分析. 工程力学. 2024(07): 68-77 . 本站查看
3. 朱经纬,贾春雨,翟晓亮,徐有良,吴永昌. 基于加速遗传算法的钢板组合梁桥设计优化研究. 桥梁建设. 2024(06): 125-132 . 百度学术
4. 史腾,朱劲松,王子挺,秦亚婷. 基于并行计算和遗传算法的钢-UHPC华夫板组合梁优化设计. 计算力学学报. 2023(03): 357-365 . 百度学术
5. 章红梅,胡帆,段元锋. Bouc-Wen模型参数识别的非线性自适应遗传算法和试验验证. 工程力学. 2022(06): 191-201 . 本站查看
6. 高源,方丽,薛贵香. 建筑生命周期碳排放评价函数多目标优化算法. 计算机仿真. 2021(02): 240-243+405 . 百度学术
7. 邓露,钟玉婷,杨远亮,刘艳芝. 冷弯薄壁型钢受弯构件承载力与延性优化研究. 工程力学. 2021(04): 93-101 . 本站查看
8. 蓝煜明,王湛,卢盛灿. 基于失效模式的半刚性钢框架结构优化设计. 贵州大学学报(自然科学版). 2021(02): 91-97 . 百度学术
9. 杜庆学. 高层剪力墙结构钢筋施工技术研究. 中国建筑装饰装修. 2021(08): 176-177 . 百度学术
10. 李远平,蔡远利,李济生. 基于改进粒子群算法的月地转移轨道优化. 工程力学. 2020(03): 238-244 . 本站查看
11. 田永辉. 超厚钢筋混凝土剪力墙模板的内支撑施工技术分析. 山西建筑. 2019(07): 132-134 . 百度学术
12. 汪超,谢能刚,黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计. 工程力学. 2019(04): 248-256 . 本站查看
13. 耿贺松,陈博文,李明伟,杨璨. 基于遗传算法与ANSYS的结构优化方法研究. 华北水利水电大学学报(自然科学版). 2019(04): 26-31 . 百度学术
14. 周宏元,张广才,王小娟,倪萍禾,王利辉. 基于改进蝴蝶优化算法的结构损伤识别. 振动.测试与诊断. 2023(01): 164-171+204 . 百度学术
其他类型引用(26)